- 相关推荐
《分数除法》教学设计
作为一名教职工,常常要根据教学需要编写教学设计,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。我们该怎么去写教学设计呢?下面是小编整理的《分数除法》教学设计,仅供参考,大家一起来看看吧。
《分数除法》教学设计1
第二课时
教学内容:
教学目标:
知识目标:
体验分数除以整数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。
能力目标:
培养学生动手动脑能力,以及判断、推理能力。
情感目标:
培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。
教学重点:能求一个数的倒数。
教学难点:分数除以整数计算法则的推导过程。
教学准备:长方形纸片。
教学过程:
一、创设情景,教学分数除法的意义
1、师:同学们我们学过整数除以整数以及小数除法,今天我们将来学习数除法。下面我们一起来研究一下几个小朋友有关分饼的问题,请你们列出算式并计算,看谁算的又快又好!
(1)每人吃1/2块饼,4个人共吃多少块饼?
(2)把2块饼平均分给4个人,每人吃了多少块饼?
(3)有2块饼,分给每人1/2块,可分给几个人?
2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。
师:讨论:分数除法的意义和整数除法的意义一样吗?
总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
二、探究分数除法的计算方法
(1)引导参与,探究新知
师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。
出示问题1。
请大家拿出一张操作纸,涂色表示出这张纸的4/7。
师:把一张纸的4/7平均分成2份,每份是这张纸的几分之几?怎样列式?4/7÷2
请同学们通过涂一涂,算一算的`方式来研究4/7÷2怎样计算。小组合作,汇报交流。
方法一:把4/7平均分成2份就是把4份平均分成2份,每份是2个1/7,也就是2/7。展示折纸和计算过程。4/7÷2=4÷2/7=2/7
方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/7的1/2是多少,可以用乘法来做。展示折纸和计算过程。4/7÷2=4/7×1/2=2/7
师:对这种做法大家有什么疑问吗?
生:这儿是除法怎么变成了乘法?
师:老师也有这个疑问,你能讲讲吗?
师:谁能结合图来讲一讲呢?
师:很好!把除法转化成乘法,问题迎刃而解,你真棒!……
(2)质疑问难,理解新知
①师小结:有的是用分子除以整数,分母不变的方法算出结果2/7,有的是转化成分数乘法来做……那么在这些方法中,你最喜欢哪种?
②接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/7平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。
③通过计算你们有什么发现?
生1、用第一种方法就不能做了。因为:上一题的时候,分子4是2的倍数,4÷2能得到整数商。而4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。
生2:把除法转化成乘法来做……4/7÷3=4/7×1/3=4/21
能再讲讲这样做的道理吗?
师:“4/7÷3”表示把4/7平均分成3份,取其中的一份。
请同学们拿出第二张操作纸,你能把图中的4/7平均分成3份,并表示出其中的一份吗?
展示学生的分法
师(指着涂色部分):你所表示的这一部分是4/7的多少?
通过直观图理解4/7的1/3是4/21
(3)比较归纳,发现规律。
①师:在计算这两道题时同学们想到了不同的算法,计算左边这道题你比较喜欢那种方法?右边呢?
②在两道题的计算中同学们都想到了把除法转化成乘法来做,请观察一下,左边这道算式,在转化的前后什么变了,什么没变?怎么变的?
③师:同学们观察真仔细!那像这样的分数除以整数的题目一般可以怎么计算呢?请同学们在小组内互相说一说!
小组活动,说算法。
④师:通过研讨我们知道了分数除以整数,可以用分子除以整数,但有时不能得到整数商,所以通常转化为乘这个整数的倒数的方法来计算。
出示:分数除以整数,等于分数乘这个整数的倒数。
还有需要注意的地方吗?
生:有,除数不能为0。
师:谁能把分数除以整数的计算法则用自己的话来说一说?
完善算法:分数除以整数(0除外),等于分数乘这个整数的倒数。
⑥那象这样的分数除以整数的题目在计算时要注意些什么?
生:要约分!结果最简。除号要变成乘号!
三巩固练习
学生独立完成
四、课堂小结
1、这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?(学生总结)
板书设计:
分数除以整数
教学反思:
有了分数乘法的学习基础,学生们能够很快适应这一课的学习方式,我从现实中的分数乘法问题和找一个数的倒数引入,帮助孩子们复习前知,当学生体会到乘除法之间的互逆关系后,由学生提出一个生活中的实际问题,引出分数除法计算的必要性,为后续的学习架好了阶梯。
本课如果仅仅关注学生是否会算了,那是不够的,在设计中,还应有另类关注。如:学生们对算理理解了吗?他们的思维是否得到了实质上的提升?他们的学习方法是否得到增进?他们是否有学习的积极态度?等等。因此,在本课教学目标的制定中,我的着眼点是不仅使学生会算,更是通过对意义的理解,让学生们深刻认识这样算的道理,突出“过程性目标”。让学生经历涂一涂、画一画、算一算、说一说的过程,在探究的过程中,让孩子们形成一种“知其然更要知其所以然”的学习态度,获取一种学习的能力,为学生的可持续发展打基础。教学中,我关注学生经历发现数学知识的过程,给学生提供动手的机会,充分借助图形语言,将抽象变直观,帮助学生体会一个分数除以整数的意义,以及“除以一个整数(零除外)等于乘这个整数的倒数”方法的合理性。接着变换探索的角度,呈现一组算式,在运算、比较的过程中再次使学生验证操作活动中发现的规律。给学生表达学习过程中体验和感悟的空间,如:谁来说一说这种算法是怎样的?你的想法是怎样的?学生在自主表达的过程中逐步积累原始体验,再通过教师的适度点拨,提升学生的数学思维。
《分数除法》教学设计2
教学目标:
1、通过观察、探究,理解分数与除法的关系,并会用分数表示两个数相除的商。
2、经历分数与除法的关系的探究过程,明确可以用分数表示两个数相除的商。
3、通过观察、探究,渗透辩证思想,激发学生学习兴趣。
教学重难点:
重点:掌握分数与除法的关系,会用分数表示两个数相除的商。
难点:理解可以用分数表示两个数相除的商。
教学过程:
一、导入揭题。
1、复习:76是()数,它表示()。10/7的分数单位是(),它有()个这样的分数单位。
2、观察:5÷8=4÷9=这两道题能得到整数商吗?
3、谈话:同学们,在计算整数除法时经常会遇到除不尽或得不到整数商,有了分数就可以解决这个问题了,这是什么原因呢?这节课就让我们一起来探究分数与除法的'关系。板书课题:《分数与除法》。
二、探索新知
1、教学例1
(1)课件出示例1
把一个蛋糕平均分给3人,每人分得多少个?
(2)同桌讨论交流:根据分数的意义怎样解决“把一个蛋糕平均分给3人,每人分得多少个?”这个问题。
(3)汇报讨论结果
(4)观察这两种解法有什么联系?
2、教学例2、
把3个饼平均分给4个孩子,每个孩子分得多少个?
(1)平均分同样可以列式为:3÷4。
(2)小组合作探究:3÷4的商能不能用分数表示呢?
(3)通过进一步探究,你发现分数与除法有什么关系了吗?
师生共同小结:被除数÷除数=除数被除数,被除数相当于分数的(分子),除数相当于分数的(分母),a÷b=ba(b≠0)想一想:为什么要注明b≠0?
三、拓展应用
一个正方形的周长是64cm,它的边长是周长的几分之几?
四、总结
通过这节课的学习,你有什么收获?
五、作业布置
完成教材第50页"做一做"
《分数除法》教学设计3
一、教学内容:分数与除法,教材第65、66页例1和例2
二、教学目标:1.使学生理解两个整数相除的商可以用分数来表示。
2.使学生掌握分数与除法的关系。
三、重点难点:1.理解、归纳分数与除法的关系。
2.用除法的意义理解分数的意义。
四、教具准备:圆片、多媒体课件。
五、教学过程:
(一)复习
把6块饼平均分给2个同学,每人几块?板书:6÷2=3(块)
(二)导入
(2)把1块饼平均分给2个同学,每人几块?板书:1÷2=0.5(块)
(三)教学实施
1.学习教材第65 页的例1 。
(1)如果把1块饼平均分给3个同学,每人又该得到几块呢?1÷3=0.3(块)
(2)1除以3除不尽,结果除了用循环小数,还可以用什么表示?
( 3)指名让学生把思路告诉大家。
就是把1块饼看成单位“1”,把单位“1”平均分成三份,表示这样一份的数,可以用分数3(1)来表示,这一份就是3(1)块。
老师根据学生回答。(板书:1 ÷ 3 =3(1)块)
(4)如果取了其中的两份,就是拿了多少块?(3(2)块)怎样看出来的?
2.观察上面三道算式结果得出:两数相除,结果不仅可以用整数、小数来表示,还可以用分数来表示。引出课题:分数与除法
3.学习例2 。
( 1 )如果把3 块饼平均分给4个同学,每人分得多少块?(板书:3 ÷ 4)( 2 )3 ÷ 4 的计算结果用分数表示是多少?请同学们用圆片分一分。
老师:根据题意,我们可以把什么看作单位“1 " ? (把3 块饼看作单位“1”。)把它平均分成4 份,每份是多少,你想怎样分?请同学到投影前演示分的过程。
通过演示发现学生有两种分法。
方法一:可以1个1个地分,先把1 块饼平均分成4 份,得到4 个4(1),3 个饼共得到12个4(1), 平均分给4 个学生。每个学生分得3个4(1),合在一起是4(3)块饼。
方法二:可以把3 块饼叠在一起,再平均分成4 份,拿出其中的一份,拼在一起就得到4(3)块饼,所以每人分得4(3)块。
讨论这两种分法哪种比较简单?(相比较而言,方法二比较简单。)
( 3 )加深理解。(课件演示)
老师:4(3)块饼表示什么意思:
①把3块饼一块一块的分,每人每次分得4(1)块,分了3次,共分得了3个4(1)块,就是4(3)块。
②把3块饼叠在一块分,分了一次,每人分得3块4(1),就是4(3)块。
现在不看单位名称,再来说说4(3)表示什么意思?( 表示把单位“1 “平均分成4 份,表示这样3 份的数;还可以表示把3 平均分成4份,表示这样一份的数。)
( 4 )巩固理解
① 如果把2块饼平均分给3个人,每人应该分得多少块? 2÷3=3(2)(块)
②刚才大家都是拿学具亲自操作的,如果不借助学具,你能想像出5块饼平均分给8个人,每人分多少块吗?(生说数理)
③从刚才的研究分析,你能直接计算7÷9的结果吗?(9(7))
4.归纳分数与除法的关系。
( l )观察讨论。
请学生观察1÷3 = (块)3÷4 =4(3)(块)讨论除法和分数有怎样的关系?
学生充分讨论后,老师引导学生归纳出:可以用分数表示整数除法的商,用除数作分母,被除数作分子,除号相当于分数中的'分数线。(课件出示表格)
用文字表示是:被除数÷除数=
老师讲述:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数。
( 2 )思考。
在被除数÷除数=这个算式中,要注意什么问题?(除数不能是零,分数的分母也不能是零。)
( 3 )用字母表示分数与除法的关系。
老师:如果用字母a 、b 分别表示被除数和除数,那么除数与分数之间的关系怎样表示呢?
老师依据学生的总结板书:a÷b = (b≠0)
明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的被除法,分母相当于除数。)
5.巩固练习:
(1)口答:
①7÷13=()(()) 8(5)=( )÷( ) ( )÷24=24(25) 9÷9=()(()) 0.5÷3=3(0.5) n÷m=()(())(m≠0)
②1米的8(3)等于3米的( )
③把2米的绳子平均分3段,每段占全长的 ( ),每段长( )米。
(2)明辨是非
①一堆苹果分成10份,每份是这堆苹果的10(1) ( )
②1米的4(3)与3米的4(1)一样长。( )
③一根木料平均锯成3段,平均每锯一次的时间是所用的总时间的3(1)。( )
④把45个作业本平均分给15个同学,每个同学分得45本的 15(1) 。()(3)动脑筋想一想
①把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?
(用分数表示)
②小明用45分钟走了3千米,平均每分钟走了多少千米?每千米需要多少时间?
《分数除法》教学设计4
一、教学内容:分数与除法,教材第65、66页例1和例2
二、教学目标:1.使学生理解两个整数相除的商可以用分数来表示。
2.使学生掌握分数与除法的关系。
三、重点难点:1.理解、归纳分数与除法的关系。
2.用除法的意义理解分数的意义。
四、教具准备:圆片、多媒体课件。
五、教学过程:
(一)复习
把6块饼平均分给2个同学,每人几块?板书:6÷2=3(块)
(二)导入
(2)把1块饼平均分给2个同学,每人几块?板书:1÷2=0.5(块)
(三)教学实施
1.学习教材第65 页的例1 。
(1)如果把1块饼平均分给3个同学,每人又该得到几块呢?1÷3=0.3(块)
(2)1除以3除不尽,结果除了用循环小数,还可以用什么表示?
通过练习,激活了学生原有的知识经验,(即两个数相除的商有可能是整数)也有可能是小数。进而提出当1÷3得不到一个有限的小数时,又该如何表示?这一问题激发了学生探索的积极性,创设解决问题的情境,研究分数与除法的关系。
( 3)指名让学生把思路告诉大家。
就是把1块饼看成单位“1”,把单位“1”平均分成三份,表示这样一份的数,可以用分数来表示,这一份就是块。
老师根据学生回答。(板书:1 ÷ 3 =块)
(4)如果取了其中的两份,就是拿了多少块?(块)怎样看出来的?
通过这样的练习,为下面的操作打下基础。
2.观察上面三道算式结果得出:两数相除,结果不仅可以用整数、小数来表示,还可以用分数来表示。引出课题:分数与除法
3.学习例2 。
( 1 )如果把3 块饼平均分给4个同学,每人分得多少块?(板书:3 ÷ 4)( 2 )3 ÷ 4 的计算结果用分数表示是多少?请同学们用圆片分一分。
老师:根据题意,我们可以把什么看作单位“1 " ? (把3 块饼看作单位“1”。)把它平均分成4 份,每份是多少,你想怎样分?请同学到投影前演示分的过程。
通过演示发现学生有两种分法。
方法一:可以1个1个地分,先把1 块饼平均分成4 份,得到4 个,3 个饼共得到12个, 平均分给4 个学生。每个学生分得3个,合在一起是块饼。
方法二:可以把3 块饼叠在一起,再平均分成4 份,拿出其中的一份,拼在一起就得到块饼,所以每人分得块。
讨论这两种分法哪种比较简单?(相比较而言,方法二比较简单。)
两种分法都强调分得了多少块饼,让学生初步体会了分数的另一种含义,即表示具体的数量。借助学具,深化研究。
( 3 )加深理解。(课件演示)
老师:块饼表示什么意思:
①把3块饼一块一块的分,每人每次分得块,分了3次,共分得了3个块,就是块。
②把3块饼叠在一块分,分了一次,每人分得3块,就是块。
现在不看单位名称,再来说说表示什么意思?( 表示把单位“1 “平均分成4 份,表示这样3 份的数;还可以表示把3 平均分成4份,表示这样一份的数。)
( 4 )巩固理解
① 如果把2块饼平均分给3个人,每人应该分得多少块? 2÷3=(块)
②刚才大家都是拿学具亲自操作的,如果不借助学具,你能想像出5块饼平均分给8个人,每人分多少块吗?(生说数理)
③从刚才的研究分析,你能直接计算7÷9的结果吗?()
借助学具分饼、想象分的过程、抛开情境给出除法算式三个环节的呈现层次清楚,逻辑性强,为学生概括分数与除法的关系提供了足够的操作经验。
4.归纳分数与除法的关系。
( l )观察讨论。
请学生观察1÷3 = (块)3÷4 =(块)讨论除法和分数有怎样的关系?
学生充分讨论后,老师引导学生归纳出:可以用分数表示整数除法的商,用除数作分母,被除数作分子,除号相当于分数中的分数线。(课件出示表格)
用文字表示是:被除数÷除数=
老师讲述:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数。
( 2 )思考。
在被除数÷除数=这个算式中,要注意什么问题?(除数不能是零,分数的分母也不能是零。)
( 3 )用字母表示分数与除法的关系。
老师:如果用字母a 、b 分别表示被除数和除数,那么除数与分数之间的关系怎样表示呢?
老师依据学生的总结板书:a÷b = (b≠0)
明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的`被除法,分母相当于除数。)
5.巩固练习:
(1)口答:
①7÷13= =( )÷( ) ( )÷24= 9÷9= 0.5÷3= n÷m=(m≠0)
②1米的等于3米的( )
③把2米的绳子平均分3段,每段占全长的 ( ),每段长( )米。
解释0.5÷3= 是可以用分数形式表示出来的,但这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数。
(2)明辨是非
①一堆苹果分成10份,每份是这堆苹果的 ( )
②1米的与3米的一样长。( )
③一根木料平均锯成3段,平均每锯一次的时间是所用的总时间的。( )
④把45个作业本平均分给15个同学,每个同学分得45本的 。()(3)动脑筋想一想
①把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?
(用分数表示)
②小明用45分钟走了3千米,平均每分钟走了多少千米?每千米需要多少时间?
教学反思:
教材分析:本节课是在学生学习了分数的产生和意义的基础上教学的,教学分数的产生时,平均分的过程往往不能得到整数的结果,要用分数来表示,已初步涉及到分数与除法的关系;教学分数的意义时,把一个物体或一个整体平均分成若干份,也蕴涵着分数与除法的关系,但是都没有明确提出来,在学生理解了分数的意义之后,教学分数与除法的关系,使学生初步知道两个整数相除,不论被除数小于、等于、大于除数,都可以用分数来表示商。这样可以加深和扩展学生对分数意义的理解,同时也为讲假分数与分数的基本性质打下基础。
设计意图:
1.直观演示是学生理解分数与除法的关系的前提:由于学生在学习分数的意义时已经对把一个物体平均分比较熟悉,所以本节课教学把一张饼平均分给3个人时并没有让学生操作,而是计算机演示分的过程,让学生理解1张饼的就是张。3张饼平均分给4个人,每人分多少张饼,是本节课教学的重点,也是难点。教师提供学具让学生充分操作,体验两种分法的含义,重点在如何理解3张饼的就是张。把2张饼平均分给3个人,每人应该分得多少张?继续让学生操作,丰富对2张饼的就是张饼的理解。学生操作经验的积累有效地突破了本节课的难点。
2.培养学生提出问题的意识与能力是培养学生创新精神:本节课围绕两种分法精心设计了具有思考性的、合乎逻辑的问题串,“逼”学生进行有序的思考,从而进一步提出有价值的问题。
3.注重了知识的系统性:数学知识不是孤立的,而是密切联系的,只有把知识放在一个完整的系统中,学生的研究才是有意义的。比如学生在应用分数与除法的关系练习时对0.5÷3=,部分学生会觉着的=表示方法是不行的,教师解释:这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数形式。
《分数除法》教学设计5
分数除法是在学生学习了整数乘除法以及解简易方程,并且学习了分数乘法知识的基础上,学习分数除法和比的初步知识。这些知识为学生学习分数除法打下了基础,学习分数除法的知识对加深学生对计算方法的理解和提高学生的计算能力有很好的作用。内容包括:分数除法、解决问题、比和比例的应用。这些知识都是学生进一步学习的重要基础,通过这些知识的学习,学生一方面基本完成任务了分数加、减、除的学习任务,比较系统地掌握了分数四则运算;另一方面又开始了比的初步知识的学习,为后面学习百分数和比例提供了基础。两方面的收获,都将在进一步的学习中发挥重要的作用。
就学习分数除法而言,首先要明确分数除法的运算意义,在此基础上探究并掌握它的计算方法,然后学习分数混合运算。关于分数除法中的解决问题,主要有两种情况,一种是问题情境的数量关系与整数除法的实际问题相同,区别只是数据由整数变成了分数。另一种是问题情境的数量关系具有一定的特殊性,表现为已知一个数的.几分之几是多少,要求这个数。这样的实际问题,与求一个数的几分之几是多少的实际问题具有紧密的内在联系,即数量关系相同,而区别在于已知数与未知数交换了位置。
教学目标
知识和技能:
1、使学生理解倒数的意义,会求一个数的倒数。
2、使学生理解分数除法的意义,掌握分数除法的计算法则,能熟练地进行计算。
3、使学生能够用方程或算术方法解答“已知一个数的几分之几是多少,求这个数”的应用题,进一步提高学生解答应用题的能力。 过程与方法:
动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。 情感、态度和价值观:
使学生进一步受到事物是相互联系的辩证唯物主义观点的启蒙教育。 教学重点、难点:
一个数除以分数的意义以及计算方法,并会分数除法解决相关的问题。掌握分数四则混合运算的运算
顺序,能应用计算法则较熟练地进行计算。
我们来看这样一道乘法应用题,妈妈在超市买了3盒糖果,每盒
是100克,3盒糖果共重多少克?我们可以列式:100×3=300(克)
如果把这道乘法应用题改编成两道除法应用题,一起来看一下: A、3盒水果糖重300克,每盒有多重? 300÷3=100(克) B、300克水果糖,每盒100克,可以装几盒? 300÷100=3(盒) (3)将100克化成 千克,300克化成 千克,得出三道分数乘、除法算式。 1/10×3=3/10(千克) 3/10÷3=1/10(千克) 3/10÷1/10=3(盒)
通过与前三道题我们可以得出:分数除法的意义与整数除法相同,都是已知两个因数的积与其中一个因数,求另个一个因数。都是乘法的逆运算。
分数应用题是小学数学应用题的重要组成部分,分数应用题的数量关系比较复杂,学生分析起来比较困难。下面介绍几种解答分数应用题的常用方法: 一、对应法
通过审题正确判断单位“1”的量后,把具体数量与分率对应起来,这是解答分数应用题的关键。
如“某筑路队筑一段路,第一天筑了全长的1/5多10米,第二天筑了全长的2/7,还剩62米未筑,这段路全长多少米?”
题目中总长度是单位“1”的量,(62+10)米与(1—1/5—2/7)相对应,因此,总长度为:(62+10)÷(1—1/5— 2/7)=140(米)。 二、变率法
题目中几个分率的单位“1”不相同,可先统一单位“1”的量,然后变换分率,寻找已知数量的对应分率,最终解决问题。
如“学校买了一批图书,高年级分得这些书的2/5,中年级分得余下的1/4,低年级分得180本,这批图书共有多少本?
该题中的“1/4”是把余下的本数看作单位“1”,而余下本数又是总本数的(1—2/5),因此,我们可以把中年级分得的本数理解为总本数的(1— 2/5)×1/4,这样可求出总本数: 180÷[1—2/5—(1—2/5)×1/4] =400(本)。 三、常量法
题目中几个数量前后都发生了变化,而有的数量不变,这就是常量,解题时可把常量看作单位“1”。
如“小华读一本书,已读页数占未读页数的1/5,如果再读30页,已读页数就占未读页数的3/5,这本书共有多少页?”
该题中再读 30页后,已读页数与未读页数都在变化,唯独总页数没有变,把总页数看作单位“1”,则总页数为:30÷(3/3+5-1/1+5)=144(页)。 四、联系法
某些题目中几个数量都与一个数量有联系,把这个数量作为桥梁,解题思路就顺畅了。 如“某小学四、五、六年级学生共种树576棵,五年级种树棵数是六年级种树棵数的 4/5,四年级种树棵数是五年级种树棵数的3/4,五年级种数多少棵?”
题目中五年级种树棵数与六年级种树棵数有关,又与四年级种树棵数有关,所以,五年级种树棵数是个桥梁,把它看作单位“1”,把“五年级种树棵数是六年级种树棵数的4/5”改变为“六年级种树棵数是五年级种树棵数的5/4倍”,所以,五年级种树棵数为:576÷(1+3/4+5/4)=192 (棵)。 五、转化法
将复杂问题中的某些条件进行转化,结合改变成简单的问题,从而化繁为简。
如“某工厂有三个车间,第一车间人数是其余两个车间人数的1/2,第二车间人数占其余两个车间人数的1/3,第三车间500人,三个车间共有多少人?
把“第一车间人数是其余两个车间人数的1/2”转化为“第一车间人数占三个车间总人数的1/1+2”,“第二车间人数占其余两个车间人数的1/3”转化为“第二车间人数占三个车
内容需要下载文档才能查看
间总人数的1/1+3”,这样,就能求出三个车间的总人数:500÷(1-1/1+2-1/1+3) =1200(人)。 六、假设法
对题目的某些数量作出假设,
内容需要下载文档才能查看
导致运算结果与题目不相符合,然后找出产生差异的原因,最终解决所求问题。
如“一项工程,甲、乙两队合做12天完成,现在先由甲队独做18天,余下的再由乙队接着做了8天正好完成,如果全工程由甲队独做,要多少天才能完成?”
假设甲、乙两队都做 8天,则共做1/12×8=2/3,比工作总量“1”少1/3,这1/3就是甲队(18-8)天所做的工作量,所以甲队独做的时间为:1÷ [1/3÷(18-8)]=30(天)。 七、倒推法
题目中几个分率的单位“1”不相同,而且单位“1”难以统一,可以先求部分量,再一步一步地逆推出总数。 如“一捆电线,第一次用去全长的1/6多2米,第二次用去余下的3/4少4米,还剩 16米,这捆电线有多少米?”
这题中两个分率的单位“1”均为未知量,我们可以从较小的单位“1”求起:(16-4)÷ (1-3/4)=48(米), (48+2)÷(1-1/6)=60(米)。 八、方程法
一些复杂的分数应用题用算术方法难以解答,不便于理解,如用方程可顺向求解,容易掌握。 如“一项工程,甲、乙两人合做8小时完成,甲独做14小时完成。现在甲做若干小时后,剩下的由乙接着做,前后共用18小时完成。求甲、乙各做多少小时? 设甲x小时,则乙做(18-x)小时,根据两个人的工作量之和为1,可列方程:1/14x+(1/8—1/14)×(18-x) =1,解得×=2,18-2=16(小时)。
《分数除法》教学设计6
学情分析:
五年级的学生已具有一定的操作、观察、归纳概括能力,有了以前学习分数乘法、倒数的基础,让学生通过涂一涂、算一算、想一想、填一填的活动来总结分数除以整数的计算方法,对于学生来说,难度不大。
教学内容分析:
《分数除法(一)》是第三单元第二课时的内容,是在学生学习了分数乘法、认识了倒数的基础上进行教学的,教材中呈现了两个问题,就是把 4/7分别平均分成2份、3份,目的是让学生在涂一涂、算一算的过程中,借助图形语言,利用已学过的分数乘法的意义解决有关分数除法的问题,从而理解分数除法的意义,并从中总结出分数除以整数的计算方法。
教学目标:
1、在涂一涂、算一算等活动中,探索并理解分数除法的意义。
2、引导学生探索并掌握分数除以整数的计算方法,并能正确计算。
3、能够运用分数除以整数的方法解决简单的实际问题。
教学重点:
引导学生探索并掌握分数除以整数的计算方法,并能正确计算。
教学难点:
1、探索分数除以整数的计算方法。
2、能够运用分数除以整数的方法解决简单的实际问题。
教学方法:
导学教学法
创新理念:
“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。“学生是数学学习的主人,教师是数学学习的组织者、引导者、合作者”。基于以上理念,在教学过程中,我采用“导学教学法”,充分发挥了教师的引导作用,让学生在动手实践的过程中去探索新知,亲身经历知识形成的全过程。
教具准备:
长方形纸、课件。
教学流程:
一、 创设情境 提出问题
(1) 把一张纸的 4/7平均分成2份,每份是这张纸的几分之几?
(2) 把一张纸的 4/7 平均分成3份,每份是这张纸的几分之几?
【设计意图:创设分长方形纸这一情境,旨在一上课就把学生带入思考的空间,抓住他们最佳的学习状态。】
二、 自主探究 小组交流
(教师指导学生自主探究,尝试解决以上两个问题,同桌之间交流想法)
自主学习提示
1. 利用手中的的学习纸,涂一涂,算一算,尝试解决这两个问题。
2. 同桌之间说一说彼此的想法。
3. 有困难的同学,可以借助课本第25页的提示,完成这两个问题。
【设计意图:在本环节教师指导学生自主学习,发挥学生探究主体性,对于多数学生而言教师不要过多提示,主要指导学困生完成探究任务。】
三 交流释疑
1、 初步感知分数除法
把一张纸的4/7 平均分成2份,每份是这张纸的几分之几?
请同学们拿出图(一)来涂一涂。
交流:为什么要这样涂,每份是这张纸的几分之几呢?
还有不同的涂法吗?
能根据这个过程列出一个除法算式吗?
这个除法算式和以前学的除法有什么不同?
这就是这节课我们要学习的分数除法。(板书)
【设计意图:通过涂一涂的活动,在教师的引导下,让学生列出除法算式,使学生初步感知分数除法的意义。】
2、 初探算法
把一张纸的 4/7 平均分成3份,每份是这张纸的几分之几?
请大家在图(二)的上面涂一涂。
交流:(展示学生不同的涂法)
同学们是把长方形纸的七分之四平均分成了三份,再把其中一份涂上颜色。 谁能根据这一过程列出一个算式。
怎样才能算出得数呢?
(师提问:计算时为什么要用 × 1/3?)
观察3和1/3 有什么关系,由除以3变成乘3的倒数 ,是不是除以一个整数就可以乘它的倒数呢?我们来验证一下。
(教师出示三组算式)
1/3÷5 4/5÷31/3÷5
指生口算。
让学生观察每一组算式,说一说发现了什么?
根据这三组算式再结合上一道题,你认为分数除以整数可以怎样计算?
(学生口述算法后)
【设计意图:分数除以整数的计算方法在本节课既是教学的重点,又是难点,为了使学生更好的掌握这部分知识,我先让学生通过涂一涂,进一步感知分数除法的意义,初步感知分数除以整数的计算方法,然后提出是不是除以一个整数就可以乘它的倒数呢?通过三组算式来验证提出的假设,这样让学生在教师的引导下,亲身经历了知识形成的全过程,突破了教学重难点。】
四、实践应用
1、算一算
9/10÷3015/16÷20xx/15÷21 8/9÷6 5/6÷15
2、填一填
师:学会了知识就要灵活的`运用,这道题你们能填上吗?
学生独立在书上第26页填一填,想一想。
集体订正。
3、解决问题。
师:为了使我们的校园更整洁,学校给我们各班划分了卫生区,这一周轮到第一组负责卫生区的卫生,老师想卫生区的四分之三平均分给四个人来负责,你们能算出每个人负责整个卫生区的几分之几吗?
学生在练习本上列式解答。
指生汇报完成情况。
运用分数除法能解决生活中的很多问题呢,谁能像老师这样来说一说生活中的问题,让大家解决。
(指生口头编题,其他学生解决)
【设计意图:通过形式多样、难易程度适当的习题,让学生在有层次的练习中巩固本节课的知识,使学生的思维得到发展。】
五、课堂总结
学生谈一谈本节课的收获。
同学们,这节课你们过的快乐吗?学习本来就是一件快乐的事,老师希望今后你们能快乐的学习,快乐的成长。
六、布置作业:
22页练一练
七.板书设计:
分数除法(一)
——分数除以整数
分数除以整数的计算方法:除以一个整数(零除外),等于乘这个整数的倒数。
(1)4/7÷2 (2) 4/7÷3
=4 /7×1/2
=2/7
教学反思:
《分数除法(一)》是学生初次接触分数除法,本节课是学生今后学习分数除法的基础,让学生理解分数除法的意义以及对算法的探索就显得格外重要。本节课我力求体现以下几点:
一、充分利用学生最佳的学习状态
课堂上省去了旧知的复习,设计简单的知识情景,以最快的速度抓住学生有效学习时间,提高课堂有效性。
二、让学生在不同的活动中探索数学。
数学课不应只让学生单纯地模仿和记忆,应让学生在具体地操作、观察、实践中得出结论。因此,课堂上我让学生通过操作、观察,引导学生探索出分数除以整数的计算方法,让学生经历了知识形成的全过程。在这样的过程中,充分地发挥了教师的引导作用,注重的是学生能力的培养,注重的是教给学生学习的方法,而不是把知识单纯的传授给学生,做到既重结果,又重过程。
三、让学生在不同层次的练习中应用数学。
学数学的目的就是用数学。在新课结束后,我让学生在不同层次的练习中应用了所学知识,让学生充分感受到了数学源于生活,又寓于生活。
《分数除法》教学设计7
教学目标
1、结合具体情境观察比较,理解分数与除法的关系,会用分数来表示两数相除的商。
2、运用分数和除法的关系,探索假分数与带分数的互化方法,初步理解假分数与带分数互化的算理,会正确进行互化。
教学重点、难点
1、理解掌握分数与除法的关系。
2、会对假分数与带分数进行正确互化。
教学过程
活动一:创设情境,引导探索。
师出示例1:我想调查一下,最近那位同学要过生日?指一名同学说说你过生日的时候必须要买什么食品?(生:蛋糕)买了蛋糕是自己吃,还是同爸爸妈妈一起吃?
师:同学们愿意帮xxx同学分一分蛋糕吗?
生:愿意!
师:出示蛋糕,接着出示例2:把一个蛋糕平均分给3个人,平均每人能分得多少?
师:这时,应该把什么看作单位“1”?
要把蛋糕平均分成几份?怎样列式?(指名口述算式)1÷3=
师:大家拿出练习本来计算这个商是多少?
生:3(1)
师:对了!那么上面的算式1÷3的商可以用分数1/3表示了。
即:1÷3=3(1)(个)
答:每人分得3(1) 个。
活动二:剪一间,拼一拼。
师:“六一”联欢的时候,我打算买3张非常好吃的比萨饼,想和班主任刘老师、还有两名在这学期进步最大的.同学A和B共同分享,大家能帮我们合理的分一下吗?
生:想!
师:出示例2 :把3张饼平均分给我们4个人,每人分得这3张饼的几分之几呢?
①议一议:这里应该把哪个量看作单位“1”的量?用什么方法分?有哪些分法?(让同学们充分考虑好后,说说自己的想法)[课件显示3张饼]
②剪一剪:下面我们用事先准备好的3个圆形表示这3张饼,请同学们以小组剪一剪,并把分好的四份摆在桌子上。[课件显示把3张饼分成了4份] ③拼一拼:分好后,请同学们每人取一份拼在一起,看看每份是一个“饼”的几分之几? [课件显示拼好后的3/4个饼]
④列一列:怎样用算式表示分饼的数量关系?谁会列式?
⑤算一算:师指一名同学板演算式:3÷4= 4(3)(张)
答:每人分得4(3) 张。
观察刚才所得结果:
1÷3=3(1) 3÷4= 4(3)
讨论、感知关系
讨论完毕后,指几名同学代表自己的小组总结:学生口述的过程中,教师出示课件:
被除数÷除数= 被除数/除数
如果分别用字母a和b表示除法算式中的被除数和除数,分数与除法的这种关系怎样表示?
学生回答,师板书:a÷b= a/b
师:大家考虑:这里的a和b是否可以是任何自然数?为什么?
生:不可以,因为这里的b≠0
师:左侧b≠0,那么右侧的b是否可以是0?为什么?
师:讨论完后,教师用红色粉笔标上: b≠0
活动三:总结提升,归纳关系。
1、让学生说一说分数与除法的联系:分子相当于除法中的被除数,分母相当于除法中的除数,分数线相当于除法中的除号。
2、判断:“分数就是除法,除法就是分数”这句话对不对?
活动四:课堂检测(一)
1、填空:课本P39试一试1。
2、用分数表示下面各式的商。
1÷4= 3÷4= 8÷3= 7÷3=
1÷7= 13÷4= 5÷2= 4÷9=
活动五:假分数带分数互化。
师:观察练习2中的分数哪些是真分数,哪些是假分数?如何将这些假分数化成带分数呢?
生:小组讨论思考
师:以7/3为例讲解,课本P39 T 2、3
师生共同总结互化方法。
1、将假分数化为带分数:分母不变,分子除以分母所得整数为带分数左边整数部分,余数作分子。
2、将带分数化为假分数:分母不变,用整数部分与分母的乘积再加原分子的和作为分子。
活动六:课堂检测(二)
课本P40 练一练 的2、3。
课后作业
用一张16开的纸设计一张数学报,说说各栏目所占的篇幅约占这张报纸的几分之几。
《分数除法》教学设计8
【教学目标】
1、 结合具体的情景,巩固、掌握有余数除法的计算方法;
2、 通过小组合作探究,理解余数一定比除数小的道理;
3、 初步养成用数学解决实际问题的意识和能力。
【教学重难点】
在巩固、掌握有余数除法的计算方法的基础上理解余数一定小于除数。
【教学过程】
一、 情景感知,适时提问。
1、用竖式计算
(1)57÷9(2)40÷8(3)38÷7(4)24÷6
(请学生独立完成,及时校对)
[设计意图:及时巩固学生已学知识,为这节新课的学习打下基础。]
2、课件出示例1,进入情境:用15盆鲜花来装饰联欢会的会场,以每5盆为一组,可以摆几组呢?
T:同学们,你们还记得这道题目吗?谁会列算式?(板书:15÷5=3(组))
二、探究发现,试作体验。
1、出示例题3:如果上一例中一共有16盆花,还是每5盆一组,最多可以分几组?多几盆呢?
T:如果现在变成了16盆花,条件没变,你还会算吗?这道题该怎样列算式呢?谁会算?(板书:16÷5=3(组)??1(盆))
2、改变条件,花盆的总数变成了17、18、19、20盆,请学生分别再来列算式算一算(写在自己的本子上)。
T:如果是17、18、19、20盆,还是每5盆一组,那最多可以分几组?还剩几盆呢?你会算吗?怎么列算式?
三 合作交流,试说分享。
1、请学生以小组分工合作的形式,先列式算一算,再讨论观察余数与除数,说说你们发现了什么?
T:前后4人为一小组,分工合作,每人做一题,并相互检查,看看有没有漏算,有没有算错,看哪一小组最先得出答案。(学生动手写一写)
T:现在哪一小组愿意将你们的计算成果和我们大家分享一下呢?(学生汇报,并板书) 17÷5=3(组)??2(人)
18÷5=3(组)??3(人)
19÷5=3(组)??4(人)
20÷5=4(组)
T:看来同学们的计算能力越来越好了。那现在我们来看看黑板上这几条算式的除数和余数,谁能来说说你发现了什么?细心的孩子一定发现了。
预设:除数比余数大;除数是5,余数可以是0、1、2、3、4.(真棒,你们观察得真仔细) T:可是,有人不服气了,我们一起去看看。(出示小精灵的`话——不对不对,这只是个巧合,
如果数大一点,结果肯定就不一样了。)你们觉得是巧合吗?好,那现在我们就去验证一下,让它输的心服口服,怎样?有信心吗?
(增加花盆的总数,分别是21、22、23、24、25盆,让学生将课本上相应的算式补充完整。——开火车汇报答案。)
21÷5=
22÷5=
23÷5=
24÷5=
25÷5=
2、课件出示所有算式,再来看看除数和余数,说一说余数为什么不能是“5”。(提示:被除数逐渐变大,除数不变,那余数呢?除数是“5”,余数可能有几种情况呢?)
3、归纳总结:(1)余数要小于除数;(2)知道除数是几,就能知道余数可能是几。
4、改变除数,不改变被除数,让学生试着做一做。(加深余数和商之间的密切联系,尤其让学生明白,当知道除数时,便可以知道余数可能是几)
16÷4=
17÷4=
18÷4=
19÷4=
四、知识梳理,适时拓展。
1、判断题:第52页的做一做,让学生判断,进一步明确“余数要比除数小”,并列出正确的竖式。
2、先做第一小题,并请学生说说自己判断的理由,引导学生理解:被除数=除数×商+余数。
3、解决问题:十月份有31天,十月份有几个星期?多几天?
4、拓展延伸,完成填一填。
5、同学们,这节课你有什么收获:你体验最深的是什么?
板书设计:
有余数的除法
17÷5=3(组)??2(人)
18÷5=3(组)??3(人)
19÷5=3(组)??4(人)
20÷5=4(组)
余数一定要比除数小。
《分数除法》教学设计9
板书设计(需要一直留在黑板上主板书)
分数除法
例1:每盒水果糖重100g,那么3盒有多重?
100×3=300(g)
3盒水果糖重300g,那么每盒有多重?
300÷3=100(g)
300g水果糖,每盒重100g,可以装几盒?
300÷ 100=3(盒)
归纳总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
例2 :把一张纸的4/5平均分成2份,每份是这张纸的几分之几?怎样列式?
4/5÷2
方法一:把4/5平均分成2份就是把4份平均分成2份,每份是2个1/5,也就是2/5。展示折纸和计算过程。
4/5÷2=4÷2/5=2/5
方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/5的1/2是多少,可以用乘法来做。展示折纸和计算过程。
4/5÷2=4/5×1/2=2/5
归纳总结:分数除以整数(0除外),等于分数乘这个整数的倒数( 结果最简。除号要变成乘号)
学生学习活动评价设计
通过这一节课的学习,要使学生理解并掌握分数除法的计算方法,会进行分数除法计算;会解答已知一个数的几分之几是多少求这个数的实际问题;并且这一节课的学习将要为后面运用比的知识解决有关的实际问题打好基础。
教学反思
本单元是在学生已经掌握了分数乘法的基础上,学习分数除法和比的初步知识。
主要内容包括:分数除法的意义与计算;解决问题;比的意义与基本性质等。本单元的内容和学生前面学习的很多知识具有比较直接的联系。如分数除法,除了与分数乘法的意义、计算及其应用有联系外,还与整数除法的意义,以及解方程的技能有关。而比的初步知识,则要用到分数和除法的一些基础知识。通过本单元的学习,学生一方面基本上完成了分数加、减、乘、除的学习任务,比较系统地掌握了分数的四则运算;另一方面又开始了比的初步知识的系统学习,为后面学习百分数和比例提供了基础。两方面的收获,都将在进一步的`学习中发挥重要的作用。我觉得在教学过程中,应充分考虑到学生自身对分数除法的意义的理解的基础上进行教学。在教学过程中要充分利用教材,激活学生已有的知识经验,引导他们展开类比思维,以促进学习的正向迁移。实际上,这也是本单元的课堂教学中,落实学生的主体地位,发挥教师主导作用的有效途径。引导学生数形结合,边操作、边观察、边思考,并通过讨论、交流,在理解的基础上得出算法,进而掌握算法。
《分数除法》教学设计10
单元教材分析
本单元是在学生学习了整数乘除法以及解简易方程,学习了分数乘法知识的基础上,学习分数除法和比的初步知识.这些知识为学生学习分数除法打下了基础,学习本单元的知识对加深学生对计算方法的理解和提高学生的计算能力有很好的作用.教材内容包括:分数除法,解决问题,比和比的应用.这些知识都是学生进一步学习的重要基础,通过本单元的学习,学生一方面基本上完成了分数加,减,除的学习任务,比较系统地掌握了分数四则运算;另一方面又开始了比的初步知识的学习,为后面学习百分数和比例提供了基础.两方面的收获,都将在进一步的学习中发挥重要的作用.
单元教学目标
1、使学生在具体情景中,感知分数除法的意义,掌握分数除法的计算方法,能正确地用口算或笔算的方法进行分数除法的计算.
2、使学生学分用分数除法来解决已知一个数的几分之几是多少,求这个数的实际问题.
3、理解比的意义和比的基本性质,知道比与分数,除法之间的关系,能正确地求比值和化简比,能运用比的有关知识解决实际问题.
4、让学生在具体生动的情景中感受学习数学的价值.
单元教学重点
1、分数除法的计算;
2、分数除法问题的解答;
3、比的意义和基本性质的理解与运用.
单元教学难点
1、理解分数除法计算法则的算理;
2、比的应用.
1、分数除法
教学目标
1、理解分数除法的意义,指导并初步掌握分数除以整数的计算法则,能正确地计算分数除以整数。
2、使学生理解整数除以分数的算理,掌握一个数除以分数的计算方法,能正确地进行一个数除以分数的计算,并培养学生的推理归纳能力。
教学重点
1、理解分数除法的意义与整数除法的意义相同。
2、学会分数除以整数的计算法则,并能应用法则正确计算。
3、一个数除以分数的算理。
4、掌握分数除法的统一法则。
教学难点
1、学会分数除以整数的计算法则,并能应用法则正确计算。
2、引导学生推导出整数除以分数的`方法。
3、对于一个数除以分数的算理的理解。
第一课时分数除法的意义和分数除以整数
教学过程:
一、创设情景导入:
同学们,前面我们学习了分数乘法,掌握了它的意义和计算法则,并用它解决了相应的实际问题。这节课开始老师将和你们一起去逐步探究分数除法的意义和计算法则,还要解决相应的实际问题。本节课我们先探究分数除法的意义和分数除以整数。
二、新知探究:
(一)分数除法的意义
1、出示例1的教学挂图,让学生看图观察图意,指名口答图意和应该怎样列式.
2、你能把上面的问题改编成用除法计算的问题吗?(学生独立思考,口答问题和列式)
3、100g=1/10kg,你能将上面的问题改成用kg作单位的吗(引导学生将整数乘除法应用题改变成分数乘除法应用题)
4、引导学生观察比较整数乘除法的问题和改写后的问题,分析得出整数除法和分数除法的联系以及分数除法的意义.
5、练习:课本28页做一做.学生独立练习,订正时让学生说明为什么这样填.
(二)分数除以整数
1、小组学习活动:
问题⑴把一张纸的4/5平均分成2份,每份是这张长方形纸的几分之几?
问题⑵把一张纸的4/5平均分成3份,每份是这张长方形纸的几分之几?
[活动要求]
①先独立动手操作,再在组内交流,
②讨论:通过折纸操作和计算,你发现了几种折纸方式,每种方式应怎样列式计算?你发现了什么规律?
2、汇报学习结果:
3、学生独立阅读教材
4、归纳总结:这节课你们学会了什么?
指导学生归纳出:分数除以一个不等于0的整数,等于分数乘以这个整数的倒数.
三、巩固与提高
①把7/8平均分成4份,每份是多少?什么数乘6等于3/17?
②如果a是一个不等于0的自然数,1/3÷a等于多少?1/a÷3等于多少?你能用一个具体的数检验上面的结果吗
四、课后作业
练习八第1、2、3题
五、板书设计:
分数除法的意义和分数除以整数
例1.100×3=300(ɡ)1/10×3=3/10(㎏)
300÷3=100(ɡ)3/10÷3=1/10(㎏)
300÷100=3(盒)3/10÷1/10=3(盒)
例2.4/5÷2=4÷2/5=2/54/5÷2=4/5×1/2=2/5
4/5÷3=4/5×1/3=4/15
《分数除法》教学设计11
教学内容:整数除以分数和平共处分数除以分数.教科书第30页例3第31的做一做,练习八的第4和5题。
教学目标:
1.通过具体的问题情境,探索并理解分数除法的计算方法。
2.确地进行分数除法的计算。
3.培养学生分析、推理能力。
教学过程:
一、复习引入
1.列式,说说数量关系。
小明2小时走了6km,平均每小时走多少千米?
速度=路程÷时间
2.填空。
2/3小时有()个1/3小时,1小时有()个1/3小时。
3.口算,说说分数除以整数的计算方法。
(1/6)÷3(4/5)÷2(3/8)÷6(6/7)÷2
(分数除以整数等于用分数乘这个整数的倒数,或者除以几等于乘几分之一)
4.引入课题。
我们已经学习了分数除以整数的分数除法,想一想,接下去应该学习什么?
今天这节课我们就来学习研究“一个数除以分数”的计算方法,看谁最先学会。
板书课题:一个数除以分数。
二、解决问题,发现算法
1.理解题意,列出算式。
(1)出示例3。
(2)学生读题,理解题意。
(3)列出算式,说出列式根据什么数量关系。
板书:2÷(2/3)(5/6)÷(5/12)
2.探索整数除以分数的计算方法。
(1)2÷(2/3)如何计算呢?让我们画出线段图看看。
(2)先画一条线段表示1小时走的路程(边说边板书),怎样表示2/3小时走了2km这个条件?
(将线段平均分成3份,其中2份表示的就是2/3小时走的路程。)
(3)指着图启发:已知2/3小时走了2km,要求1小时走了多少千米?可以先算什么,再算什么?把你的想法与小组成员交流讨论一下。
(4)根据学生的回答把线段图补充完整,板书计算思路。
先求1/3小时走了多少千米,也就是求2的1/2,算式:2×1/2
再求3个1/3小时走了多少千米,算式:2×(1/2)×3
(5)找出计算方法。
板书:(乘法结合律)
现在会算了吗?说说2×1/2是图上的哪一段,表示什么?(1/3小时走了1km)再乘3,得到的结果是图上的哪一段,表示什么?(1小时走了3km)
启发:刚才我们用2÷2/3求1小时走的路程,现在我们又发现,2×3/2也可以求1小时走的路程,所以
观察:除法转化成了什么运算?什么没有变?什么变了?是怎样变的?
强调:被除数没有变,除号变乘号,除数变成了它的倒数。
(6)小结:从上面这个推算过程中我们找到了整数除以分数的计算方法是:整数除以分数等于用整数乘这个分数的倒数。
板书,学生齐读。
3.探索分数除以分数的.计算方法。
(1)让学生尝试计算5/6÷5/12。
我们已经通过2÷2/3找到了整数除以分数的计算方法,分数除以分数的计算请你们自己试试看。
(2)学生汇报,教师板书:
(3)为什么写成×(12/5)?
(4)怎样验证这种计算结果是正确的?
学生可能回答:
①先求1/12小时走了多少千米,也就是求5/6的1/5,算式是5/6×1/5
再求12个1/12小时走了多少千米,算式是5/6×1/5×12
②用乘法验算。
(5)回答“谁走得快些”。
(6)小结:现在我们发现,无论是整数除以分数,还是分数除以分数,都是转化为什么运算,怎样用一句话来叙述这个计算方法?
让同桌学生相互议一议,再指名回答。
(7)看书质疑:看看书上是怎样总结的,和你们的叙述有什么不同?
强调:除以一个不等于0的数。
齐读法则。
三、巩固练习
1.口算。(采用口算对折卡片)
(1)不能约分的2÷3/5=1/3÷2/5=
(2)能约分的3÷3/4=2/7÷6/7=
2.完成课本第31页“做一做”第1题,填在书上。
第2题,写在课堂练习本上,写出过程。
3.直接写出得数。
1/3÷1/3=1÷1/3=5/6÷3=3/7÷6/7=3/7×7/9=
四、师生共同小结
1.这节课我们学习了哪些知识?
2.一个数除以分数的计算方法是什么?
五、布置作业(略)
《分数除法》教学设计12
教材分析:
本节课是在学生已掌握分数除法的意义,分数乘法应用题以及用方程解已知一个数的几分之几是多少,求这个数的文字题的基础上进行教学的,通过教学使学生理解已知一个数的几分之几是多少,求这个数的应用题是求一个数的几分之几是多少的应用题的逆解题,从而认识到乘、除法之间的内在联系,也突出了分数除法的意义,本课教学的重点是数量关系的分析,判断哪个量是单位“1”,难点是用解方程的方法解答分数除法应用题.
教学要求:
1、使学生认识分数除法应用题的特点,能根据应用题的特点理解解题思路和解题方法,学会解答已知一个数的几分之几是多少求这个数的应用题。
2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。
教学重难点:
分数除法应用题的特点及解题思路和解题方法。
教学过程:
一、 谈话激趣,复习辅垫
1. 师生交流
师:同学们,你们知道在我们体内含量最好多的物质是什么吗?(水)
对,水是我们体内含量最多的物质,它对我们人体是至关重要的,是构成我们人体组织的主要成分。那么你们了解体内水分占体重的几分之几吗?
师:老师查到了一些资料,我们一起来看一下。(课件出示)
2.复习旧知
师:现在你们知道了吧!同学们如果告诉你们,我的体重是50千克,你们能很快算出我体内水分的质量吗?
学生回答后说明理由。
师:算一算你们自己体内水分的质量吧!
生答
师:一儿童的体重是35千克,你们能帮他算出他体内水分的质量吗?你们都是怎么算出来的呢?
生回答后出示:儿童的体重× 5 (4 )=儿童体内水分的重量
35× 5 (4 )=28(千克)
师:谁还能根据另一个信息写出等量关系式?
成人的体重× 3 (2 )=成人体内的水分的重量
2. 揭示课题
师:同学们以前的知识学得可真好,如果老师告诉你们小朋友们体内有28千克水分,你们能算出他的体重吗?这就是我们今天要来研究的分数除法应用题。
二、 引导探究,解决问题
1. 课件出示例题。
2. 合作探究
师:同桌互相商量一下,要解决这个问题,数量关系是怎样的?用自己喜欢的方式把它表示出来并解答出来。
3. 学生汇报
生1:根据数量关系式:儿童的体重× 5 (4 )=儿童体内水分的重量,再根据关系式列出方程进行解答。(师随着学生的发言随机出示课件)
生2:直接用算术方法解决的,知道体重的 5 (4 )是28千克,就可以直接用除法来做。
28÷ 5 (4 )=35(千克)
4. 比较算法
比较算术做法与方程做法的优缺点?
(让学生进行何去讨论,通过比较使学生看到列方程解,思路统一,便于理解。)
5. 对比小结
和前面复习题进行比较一下,看看这题和复习题有什么异同?
(1) 看作单位“1”的数量相同,数量关系式相同。
(2) 复习题单位“1”的量已知,用乘法计算;
例1单位“1”的量未知, 可以用方程解答。
(3) 因为它们的数量关系式相同,所以这两种题目的解题思路是一致的,都是先找出把哪个数量看作单位“1”,根据单位“1”是已知还是未知,再确定是用乘法解还是方程解。
6.试一试: 一条裤子的价格是75元,是一件上衣的 3 (2 )。一件上衣多少元?
问:这道题已知什么?求什么?谁和谁在比?哪个量是单位“1”?
单位“1”是已知还是未知的?
根据学生回答画线段图。
根据题中的数量关系找学生列出等量关系式。
学生根据等量关系式列方程解答(找学习板演,其它学生在练习本上做)。
师:这道题你还能用其它方法解答吗?
(根据分数除法的意义,已知两个因数的只与其中一个因数,求另一个因为用除法计算。)
三、 联系实际,巩固提高
1. (投影)看图口头列式,并用一句话概括题中的等量关系。
(1)
(2)
2.练一练:
(1)、小明体重24千克,是爸爸体重的3/8 ,爸爸体重是多少千克?
(2)、一个修路队修一条路,第一天修了全长的 5 (2 ),正好是160米,这条路全长是多少米?
3.对比练习
(1)一条路50千米,修了 5 (2 ),修了多少千米?
(2) 一条路修了50千米,修了 5 (2 ),这条路全长是多少千米?
(3)一条路50千米,修了 5 (2 )千米,还剩多少千米?
四、全课小结畅谈收获
①今天这节课我们研究了什么问题?②解答分数除法应用题的关键是什么?③单位“1”是已知的用什么方法解答?单位“1”是未知的可以用什么方法解答。
教师强调:分析应用题数量关系比较复杂,因此在解答分数应用题时要注意借助线段图来分析题中的数量关系,解答后要注意检验。
设计意图:
一、从生活入手学数学。
《国家数学课程标准》指出:“数学教学要从学生的生活经验和已有的'知识背景出发,向他们提供充分的从事数学活动和交流的机会。”教学一开始教师就改变由复习旧知引入新知的传统做法,直接取材于学生的生活实际,用介绍该班的情况引发学生参与的积极性,使学生感到数学就在自已的身边,在生活中学数学,让学生学习有价值的数学。
二、关注过程,让学生获得亲身体验。
教学中,为让学生认识解答分数乘法应用题的关键是什么时,我故意不作任何说明,通过省略题中的一个已知条件,让学生发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数乘法应用题的关键是从题目的关键句找出数量之间的相等关系。
在教学中体现了“自主、合作、探究”的教学方式。以往分数除法应用题教学效率并不高,究其原因,主要是教师教学存在偏差。教师喜欢重关键词语琐碎地分析,喜欢用严密的语言进行严谨地逻辑推理,虽分析得头头是道,但容易走两个极端,或者把学生本来已经理解的地方,仍做不必要的分析;或者把学生当作学者,对本来不可理解的,仍做深入的、细碎的剖析,这样就浪费了宝贵的课堂时间。教学中我把分数除法应用题与引入的分数乘法应用题结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力,省去了许多烦琐的分析和讲解。在教学中准确把握自己的地位。我想真正把自己当成了学生学习的帮助者、激励者和课堂生活的导演,凸显学生的主体地位,体现了生本主义教育思想。
三、多角度分析问题,提高能力。
在计算应用题的时候,我通过鼓励学生对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。另外,改变以往只从例题中草草抽象概括数量关系,而让学生死记硬背,如“是、占、比、相当于后面就是单位1”;“知1求几用乘法,知几求1用除法”等等的做法,充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。
四、 有破度有层次地设计练习,提高学生的思维能力。
教案还精心设计了练习题,通过看图,找等量关系,巩固了学生的分析思路;通过三类题的对比练习,使学生掌握了三类题的异同点,增强了学生的辨析能力,对于学生分析和解题起到了很好的推动作用,使学生无论遇到什么题,都会做到:抓住特点,学而不乱。
《分数除法》教学设计13
教学设想:
1、注重考虑学生的知识起点,引发学生的认知冲突,让学生感知“用分数表示除法的商”的产生与发展的过程。
2、充分利用学习材料,引导学生自主探索、交流合作、解决问题,从而实现数学的再创造,突出学习的自主性(感知→猜想→验证→概括→巩固),真正理解分数商的由来和所表示的意义。
3、创设有效的问题情境,通过的学生猜想、说理、比较、概括等途径,突出教学重点,训练学生思维。
教学目标:
1、理解分数与除法的关系,知道如何用分数表示除法算式的商。
2、培养学生动手操作、合作交流和灵活运用知识的能力。
3、通过学习,培养学生转化的数学思想和勇于探索的精神。
教学重点:
理解分数与除法的关系。
教学难点:
具体体会每一个商的由来和表示的含义。
教学过程:
一、感知关系
1、问题:把6米长的绳子平均分成3段。每段长多少米?
把1米长的.绳子平均分成3段。每段长多少米?
提问:怎样计算每一段的长度?商是多少?为什么?(画线段图)
2、揭题、猜想关系:你能猜想一下分数与除法有着怎样的关系呢?
板书:被除数÷除数=被除数/除数
二、探究关系
1、、验证关系
(1)通过动手操作验证
出示实例:把3块饼平均分给4个小朋友,每人分得多少块?
列式质疑:3÷4=(师:商可能是几?为什么?你能否验证一下呢?)
动手操作:剪拼纸圆,研究3÷4的商的由来和表示的含义。
同桌交流:结合操作,请跟你的同桌说说3÷4的商是多少及其由来。
反馈验证
引导总结:把3块饼平均分成4份,每份是3块饼的1/4→1块饼的3/4,即3/4块。
板书:3÷4=3/4
(2)运用分数意义验证
师:刚才是通过操作验证了3÷4=3/4,我们还能否通过其他途径来验证分数与除法的关系吗?
出示例[2]:17分是几分之几小时?
引导列式,借助钟面图,结合分数的意义求商(师:17÷60=?你是怎样想的?)
1÷60=1/60 17÷60=17/60(小时)
引导小结:分数与除法之间的关系,还可以用来转化名数。
2、揭示关系
师:通过刚才的验证,你得出了哪些结论?
①两个数相除,当商不是整数时,可以用分数来表示。
②被除数÷除数=被除数/除数。
师:我们已经通过实例验证了分数与除法的关系,你能结合具体算式将“分数与除法关系表”填写完整吗?
联系
区别
除法
被除数
除号
除数
是一种运算
分数
师:如果用字母a、b分别表示被除数和除数,那么你能不能用字母关系式清楚地表示除法与分数的关系呢?根据学生回答板书:a÷b=a/b
引导推理:除法里有什么具体要求?为什么?那分数有没有要求呢?(引导从分数所表示的意义说明没有意义)板书:b≠0
三、巩固关系
1、强化分数与除法的关系。
① P.82 2 ②(P.82 4)
③填上合适的分数8cm=( )m 13g=( )kg 15dm2=( )m2 29分=( )小时
④在括号里填上合适的数
( )÷( )= 5/8, 3/5=( )÷( ),( )/( )=( )÷( )
2、比较练习,完成P.82 3
①学生选择条件,列式解答。
②引导比较:联系—都占总数的1/3,区别—能否用整数表示商
四、总结提升
师:分数与除法有些什么关系呢?我们一起来回顾一下。(生:……)
质疑: 5/8这个分数表示的意义是什么?还可以怎样理解?
《分数除法》教学设计14
教学目标
1、使学生结合具体情境,探索并理解分数与除法的关系,会用分数表示两个整数相除的商,会用分数表示有关单位换算的结果;能列式解决求一个数是另一个数的几分之几的简单实际问题。
2、使学生在探索分数与除法关系的过程中,进一步发展数感,培养观察、比较、分析、推理等思维能力。
3、构筑探索交流的平台,体验数学学习的乐趣,增强学生学习数学的信心。
教学重难点
理解分数与除法的关系
教学准备
每人准备4张同样大小的圆片
教学过程
一、引入情境,揭示例题
口答题
1、把8块饼干平均分给4个小朋友,每人分得几块?
2、把4块饼干平均分给4个小朋友,每人分得几块?
3、把3块饼干平均分给4个小朋友,每人分得几块?
怎样列式?板书3÷4
引导:把3块饼干平均分给4个小朋友,平均每人能分到1块吗?
不满1块那该怎么表示呢?
生:小数或分数
二、实践操作探索研究
师:那怎样用分数表示3÷4的商呢?请大家拿出3张同样的圆片,把它看作3块饼,按题目的要求把它分一分,看结果是多少?
学生动手操作
教师巡视,了解学生是怎样的想的',当学生表述比较好时,教师有选择的把圆片贴在黑板上,等集体交流时让学生说说这样分的理由。
师:接下来我们请同学汇报一下他们研究所得结果。
(生讲述这样分的理由)
教师总结:(1)把一块饼干平均分给4个小朋友,所以就平均分成4份,每人就可分得1/4块,现在一共有3块饼干,每人就可得到3个1/4块,就是3/4块。
(2)如果把三块饼干放在一起分,每人就可以分得3块的1/4,就是3/4块。
总结:把3块饼干平均分给4个小朋友,每人分得3/4块
板书:3÷4=3/4(块)
师:如果我想把3块饼干分给5个小朋友呢?,每人分得多少块?
学生口述理由。板书:3÷5
师:想想该怎么去分?把你的想法和同桌交流下。
指名让学生说说思考过程。
板书:3÷5=3/5(块)
师:如果分给7个小朋友呢?
学生口述3÷7=3/7(块)
三、归纳总结,围绕主题
师:请同学们仔细观察上面的两个等式,你发现分数和除法算式之间有和联系?这也正是本节课我们所要学习的内容。
板书课题:分数与除法的关系
生相互交流。教师板书:被除数÷除数=
师:除法算式又可以写成什么形式?
生补充:被除数÷除数=被除数/除数
师:如果用a表示被除数,b表示除数,那么a÷b又可怎么写?
生:a÷b=a/b
师:这里的a和b可以取任何数吗?为什么?
生:除数不能为0。
师:分数和除法之间的关系,你有什么好的方法记住它们吗?
生交流讨论并回答
师总结,被除数相当于分子,除数相当于分母,除号相当于分数线。
四、巩固练习,拓展延伸
师:请大家把书本打开到第45页,马上完成“练一练”的第一小题。
集体校对。
师引导:比较上下两行有什么不同?
在学生回答的基础上,引导:用分数可以表示整数除法的商,反过来,一个分数也可以看成两个数相除。
师:接下来请大家独立完成“试一试”两小题。
然后小组交流你是怎么想的?
师:把7分米改写成用米作单位,可以列怎样的除法算式?
生:7÷10=7/10(米)
师:第二个呢?
生:23÷60=23/60(时)
师:独立完成“练一练”的第二题
集体讲评校对。
师:完成“练习八”的第一题口答
师:完成“练习八”的第三题
学生在书本上完成,
教师追问:把1米长的彩带平均分成3份,求1份有多长,可以列怎样的除法算式?把2米长的彩带平均分成3份,求1份有多长,可以列怎样的除法算式?
五、课堂作业
完成“练习八”的第二题
教后反思:
本节课重在学生通过自己探索实践,来观察和理解分数和除法之间的关系。在教学时,要求学生把3块饼干平均分给4个小朋友,当有学生展示了自己的研究成果,即把一块饼干平均分给4个小朋友,就该把这块饼干平均分成4份,这样每人就可以得到1块饼干中的1/4,也就是1/4块,现在有三个同样的饼干,按照同样的方法去分,每人就可以得到3个1/4块,就是3/4块。在边展示边讲解后,我继续提问,除了这样的思考方式,你还可以怎么分?有一个成绩较好,思维较敏锐的学生说,我们还可以把这块饼干平均分成8份,每人取其中的2份,就是2/8块,共有3个2/8块,就是6/8块也就是3/4块。我注意到了,我只是点了一下,这样也是可以的,6/8就是3/4,这是我们以后所要学习的内容。课后,在其余老师的点拨下,我也认真思考了这个问题。其实,我觉得,这个学生出现了这样的思维方式也未尝不可,的确也是合情合理的。但是实际上,我还是觉得该生对于分数的意义掌握的不够牢固,对于题目中已经很明显地给出了。要平均分给4个小朋友,那应该平均分成4份,而他却想到了平均分成了8份,这是思维跳跃的一种形式,但也是基本知识掌握不牢固的一种体现,所以在今后的教学中,我应加强学生认真读题的习惯,将基础知识扎扎实实地运用到解决实际问题中去。<
《分数除法》教学设计15
教学目标
1.进一步加深对分数乘、除法应用题的数量关系和内在联系的认识.明确它们的相同点和不同点.
2.掌握分数乘、除法应用题的分析、解答方法.
教学重点
训练学生分析分数应用题的数量关系,明确分数乘除法应用题的相同点和不同点.
教学难点
准确判断单位1,正确地解答分数应用题.
教学步骤
一、铺垫孕伏
(一)导入:我们已经学过了三种分数乘、除法应用题(板书:分数乘、除法应用题),请同学们想一想都是哪三种?解答分数乘、除法应用题的关键是什么?
(二)判断单位1.
1.鹅的只数是鸭的 .
2.甲的 是乙.
3.乙是甲的 .
4.男生人数的 相当于女生.
5.小齿轮的齿数占大齿轮的 .
(三)列式计算.
1.4是12的几分之几?
2.12的 是多少?
3.一个数的 是4,求这个数.
二、探究新知
(一)教学例3第(1)题
池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?
1.读题并找出已知条件和问题
2.提问:应把谁看作单位1?是根据题中哪句话判断的?
3.画图.
4.列式解答
答:鹅的只数是鸭的 .
(二)教学例3第(2)、(3)题.
池塘里有12只鸭,鹅的只数是鸭的 .池塘里有多少只鹅?
池塘里有4只鹅,正好是鸭的只数的 ,池塘里有多少只鸭?
1.画图理解题意
2.列式解答
3.集体订正
(三)小结
这三道题有什么相同点和不同点?解题关键是什么?
1.结构上
相同点:都有3个数量,即鸭的`只数,鹅的只数,鹅是鸭的几分之几;
不同点:已知和未知不一样.
2.解题思路上
相同点:都要首先弄清谁作标准,把谁看作单位1;
不同点:根据已知、未知的变化,确定不同的解答方法.
解题关键是:正确分析题中的数量关系,明确谁作单位1.
教师:分数乘除法应用题,在结构、解题思路及方法上,既有联系又有区别.我们在解
答这类应用题时,一定要认真正确分析题中的数量关系,准确判断谁作单位1.这样才能提高解答分数应用题的能力.
三、全课小结
这节课我们进一步学习了分数乘、除法应用题,并进行了比较.解答时,要正确地判断单位1,从而确定解答方法.
四、巩固练习
(一)商店运来红毛衣25包,蓝毛衣15包,蓝毛衣的包数是红毛衣的几分之几?
(二)商店运来红毛衣25包,运来蓝毛衣的包数是红毛衣的 .商店运来蓝毛衣多少包?
(三)商店运来蓝毛衣15包,正好是运来红毛衣包数的 .商店运来红毛衣多少包?
五、课后作业
(一)校园里栽了杨树144棵,栽的松树的棵数是杨树的 ,校园里栽了松树多少棵?
(二)学校买了蓝墨水30瓶,红墨水24瓶.蓝墨水是红墨水的几倍?
(三)农场有小牛40头,是大牛头数的 .农场有大牛多少头?
六、板书设计
分数乘、除法应用题对比
1.池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?
412=
答:鹅的只数是鸭的 .
2.池塘里有12只鸭,鹅的只数是鸭的 .池塘里有多少只鹅?
12 =4(只)
答:池塘里有4只鹅.
3.池塘里有4只鹅,正好是鸭的只数的 .池塘里有多少只鸭?
4 =12(只)
答:池塘里有12只鸭.