- 相关推荐
《方程》教学反思
作为一位到岗不久的教师,我们的任务之一就是课堂教学,在写教学反思的时候可以反思自己的教学失误,教学反思我们应该怎么写呢?以下是小编整理的《方程》教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。
《方程》教学反思1
今天上了《一元二次方程的解法》一课,课后根据听课老师的反馈意见及自己对上课的一些情况的了解进行了反思:
一、本节课采用了“先学后教、合作探究、当堂达标”的课堂教学模式,先由学生课外自学,了解用因式分解法解一元二次方程的解法,并会求一些简单的一元二次方程的解;其次,在课堂中通过合作探究、小组交流、学生展示、教师点评进一步掌握一元二次方程的解法;第三,通过当堂练习、讲评,进一步巩固解一元二次方程的解题方法与技巧。通过本课的授课情况及听、评课教师的反馈来看,基本上达到了课前设计的教学目的。
二、一些问题与想法:
1、不管是自己外出听类似的公开教学,还是自己在实际操作中都会遇到同样的一个问题:学生数学语言运用得不好!很多时候,上台来展示的学生讲完后,我往下看看台下的学生,都是是一脸的茫然,不知道台上的同学在说什么。特别是在讲解一些问题、解题技巧时,上面讲解的同学常常会采用一些自创的语言来描述。好吧,能让下面的同学听懂也行。只是大多时候都是让台下的同学听得云里雾里,摸不着头脑。
2、新的课堂教学要求体现学生的主体地位,教师只起到引导作用。在本课的教学过程中,因要用到因式分解的方法来解一元二次方程,在实际教学环节中,我花了一些时间对初二的因式分解进行了复习。课后的教师评课中,有老师讲到这一环节处理得不是很理想,我个人感觉也是如此,因式分解作为初二学习过的.旧知识,完全可以让学生利用课余时间自己完成,教师在授课过程中可以直接检查学生完成的情况,视情况进行点评即可。节省下来的时间用在后面的课堂小结和当堂达标上会让本节课的时间安排更加合理、充分。其实,这也是我常常会犯的一个错误,相信学生,放手让学生去独立完成,让课堂教学环节更加合理,这也是我今后教学中要重点解决的一个问题。
3、采用新课堂教学模式进行教学让一些老教师感觉到不太放心的就是教学效果了。课改让人看到的表面映象是学生在课堂中更加的积极主动,课堂气氛与以往相比也有很大的进步,但是在短短的40分钟时间里,让学生通过合作交流、教师仅仅点评能达到以往老师主讲起到的效果吗?初三还需要课改吗?是不是回到原来的教学方式方法上更好?同组的教师中有一个是上届未进行课堂教学改革的毕业班的老师,上习惯了老式的教学方法,对新的课堂教学模式有一定的抵触情绪。我想课改不仅仅是改上课的方式,最主要的还是要通过课堂教学方式方法的改变来达到提高课堂教学的效果的目的。意识到这一点将促使我在今后的教学中不断改进自己的观念、提高自己的教学方法。
《方程》教学反思2
《抛物线及其标准方程》是人教版高中数学(选修2—1)中的内容,适用对象是高二年级理科的学生。学生在初中阶段所学的二次函数中,已经初步接触过抛物线。通过本节课的学习,可以让学生进一步了解抛物线所形成的几何本质。在研究椭圆和双曲线的基础上,通过类比来研究抛物线的定义和标准方程,让学生进一步掌握研究曲的基本方法,并为他们今后学习解析几何奠定良好的基础。
本课在新课标思想的指导下,结合前后的知识内容及学生的特点和认知规律,创设情境,激发学生学习兴趣,教师现场用几何画板进行演示,让学生对抛物线由感性认识开始,归纳出抛物线的定义,逐步上升到理性认识,并根据定义推导抛物线的标准方程。在课堂教学中,充分发挥多媒体的资源优势,利用计算机作为辅助手段,动态演示抛物线的图像,激发学生学习兴趣,有效地协助完成了师生探究活动。充分将信息技术和学科教学有机地整合起来,有利于突出重点、突破难点,有利于教学目标的实现,使学生对所学知识得以深化。充分体现学生的主体地位,让学生成为学习的主人。
在教学中结合新课标的思想,从三个维度出发,制定如下的.教学目标:由实例感知,得出抛物线的定义,并推导出其标准方程,在实际应用中进一步体会数形结合的思想。 使学生了解抛物线的定义、几何图形和标准方程;知道它们的简单几何性质;使用抛物线的定义求抛物线的标准方程,焦点坐标,准线方程。
同时能使学生初步根据抛物线的特征选择不同的解决问题的方法。体会抛物线在生活中的应用,学会在生活中用数学的方法去解释生活中的问题。了解抛物线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。通过设置丰富的问题情境,鼓励从多角度思考、探索、交流,激发学生的好奇心和主动学习的欲望;通过抛物线的定义及其标准方程的学习,进一步体会数形结合的思想, 养成利用数形结合解决问题的习惯。
不足之处:课堂容量稍显大些,给学生自己思考的时间空间不够。
《方程》教学反思3
本堂课突出问题的应用意识。教师首先用一个学生感兴趣的实际问题引人课题。在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开思考、讨论,进行学习。内容主要是方程、一元一次方程、方程的解、解方程等概念的学习。为了加强对这些概念的理解分别选用了辨别方程及一元一次方程的题目,并要求说明理由;利用一元一次方程的定义解决问题等。如何检验一个数是否为方程的解也是本课的主要内容。通过学生的辨析、纠错,说明检验的方法及如何书写,老师在屏幕上给出板书格式,学生通过练习加深格式的书写。
1、对概念的理解及辨析效果不错。
但检验还是有点问题:
(1)可能格式是用ppt投影出来的而有的学生没仔细观察,板书的时候有学生左右两边还是连在一起写;
(2)旧知遗忘严重,所以前面的复习占用了一定的时间,导致最后小结比较匆忙。
2、体现学生的主体意识。
本设计中,教师始终把学生放在主体的地位:让学生通过对列算式(难度很大)与列方程的比较,分别归纳出它们的特点,从而感受到从算术方法到代数方法是数学的进步;让学生通过合作与交流,得出问题的不同解答方法;让学生对一节课的学习内容、方法、注意点等进行归纳。
3、体现学生思维的层次性。
教师首先引导学生尝试用算术方法解决间题,但难度很大,然后再逐步引导学生列出含未知数的式子,寻找相等关系列出方程。在寻找相等关系、设未知数及作业的布置等环节中,教师都注意了学生思维的层次性。
4、渗透建模的思想。
把实际间题中的数量关系用方程形式表示出来,就是建立一种数学模型,教师有意识地按设未知数、列方程等步骤组织学生学习,就是培养学生由实际问题抽象出方程模型的能力。学生要学习的数学知识,是经过前人的筛选和整理了的,但对于他们来说仍是全新的、未知的。这就需要教师通过对学习内容的重新设计,启发学生去思考,引导学生去探究,使学生在一定的条件下,经过自身的学习活动,把新的知识纳人原有的认知结构,进行重组、整合,构建新的`认知结构。这就是建构主义的教学观。
5、体现了自主学习、合作交流的新课程理念。
对于例题的处理,改变了传统的教学模式,采用了“尝试—交流—讲评—讨论”的方式,充分发挥学生的主体性、参与性。对于用估算的方法求方程的解时,同样采用了“尝试—发现—归纳”的方式。
6、重视方程思想的渗透也是新课程的一个特点。
本设计一开始就让学生用两种不同的方式来表示同一个量,在一步一步的学习中,逐步体现“列方程就是用两种不同的方式来表示同一个量”的观点。在用估算的方法求方程的解时,体现了用具体的数值代入检验的方法。 今后还是要对学生加强学法的指导,课堂上引导学生注意一些知识点的特点及应用方法,更好的提高课堂效率。
《方程》教学反思4
本节课的学生学习的重难点是掌握较复杂方程的解法,会正确分析题目中的数量关系;学习目标是进一步掌握列方程解决问题的方法。这一小节内容是在前面初步学会列方程解比较容易的应用题的基础上,教学解答稍复杂的两步计算应用题。例1若用算术方法解,需逆思考,思维难度大,学生容易出现先除后减的错误,用方程解,思路比较顺,体现了列方程解应用题的优越性。
一、从学生喜闻乐见的事物入手,降低问题的难度。
解稍复杂的方程这部分内容烦琐乏味,解答例1这类应用题的关键是找题里数量间的相等关系。为了帮助学生找准题量的等量关系。我从学生喜欢的事物入手,引出数学问题,激发学生的学习数学的兴趣,又为学习新知识做了很多的铺垫。
二、放手让学生思考、解答,选择解题最佳方案。
让学生当小老师,从问题中找出数量之间的关系,弄清解决问题的思路,展示讲解自己的思考过程和结果,这样既增加学生学习的信心,又培养学生分析问题的能力,发展学生的思维空间;然后,我大胆放手,让学生用自己学过的方法来解答例1,最后老师让学生把各种不同的'解法板演在黑板上,让学生分析哪种解法合理,再从中选择最佳解题方案。这样既突出了最佳解题思路,又强化了列方程解题的优越性和解题的关键,促进了学生逻辑思维的发展。
三、教会学生学习方法,比教会知识更重要。
应用题的教学,关键是理清思路,教给方法,启迪思维,提高解题能力。这节课的教学中,教师敢于大胆放手,让学生观察图画,了解画面信息,白色多少块,黑色多少块,白色比黑色少多少等信息,组织学生小组讨论交流,再在练习本上画线段图,然后指导学生根据线段图,分析数量之间的关系,讨论交流解决问题的方法。
让学生成为学习的主人,参与到教学的全过程中去。所以在应用题的教学中,教师要指导学生学会分析应用题的解题方法,一句话,教会学生学习方法比教会知识更重要,让学生真正成为学习的主体。教师是教学过程的组织者、引导者。
《方程》教学反思5
教师想方设法为学生设计好的问题情景,同时给学生提供充分的思维空间,学生在参与发现和探索的过程中思维就会创在一个又一个的点上,这样的教学日积月累对于培养学生的创新意识和创新能力是有巨大的作用的。我认为学好数学最好的方法是在发现中学习,在学生的再创造中学习,并引导学生去学习。
教学设计中教师要根据目的要求,内容多少,重点难点,学生的条件,以及教学设备等合理地分配教学时间。其次,要注意节省时间,特别是在讲授新知识时,要抓住重点,不能企图一下讲深讲透。要安排一定的.练习时间。通过练习的反馈,再采取必要的讲解或补充练习。再次,要注意尽量安排全班学生的活动,如操作、练习巩固,解应用题等,避免由少数人代替全班学生的思维活动,使大多数学生成为旁观者。要注意在一节课内提高学生的平均做题率。此外,还要注意选择有效的练习方式和收集反馈信息的方式,以便节约教学时间,并能及时发现问题,教学反思《分式方程教学反思》。
班级的学生有整体的特点,当一定存在个体差异。如果要求每一个教学目标都人人过关,实属不智行为。效率是整体利益的平衡结果,不能因为个别同学目标未达成而牺牲整体的时间利益,这会造成新的教学问题。所以在集体教学时,把握大多数,将整体利益平衡好,这样的集体教学才是有效率可言的。当然教师在教学过程还是要关注每一位学生,关注其是否在听教师的讲解分析,以及自身是否在积极思考问题。千万不可只顾自己按照教案设计去讲,而忽视学生的思维。
《方程》教学反思6
《等式与方程》教学反思 这是开学第一天,我给孩子们上的新课内容。课堂气氛很活跃,孩子们回答问题也很积极。本节课的重点是方程的概念以及等式与方程的关系。 "含有未知数的等式是方程",这句话中包括两个条件,一个是"含有求知数",一个是"等式"。因此,"含有未知数"与"等式"是方程意义的'两个重要的内涵。 在上课之前,我本来是想带天平演示以加深孩子们对等式的理解和掌握,后来 为了课堂实行方便有效,我只带了挂图,孩子们也学的很积极。在这主要是让学生学会判断哪些是方程,哪些不是方程。 断定一个式子是不是方程,要从两个条件入手,一是"含有求知数"二是"等式",两个条件缺一不可。从而学生互相问,这个为什么不是,哪个为什么不是。含有求知数:5Y不是方程,因为不是等式。5+8=13不是方程,因为没有求知数。所以方程既要是等式又要含有求知数。 X+Y=Z也是方程,因为含有求知数,并且是等式。Y=5也是方程,因为含有求知数,并且是等式。 通过本节课的学习,孩子们基本上可以判断哪些是方程,哪些是等式,也分清了等式和方程之间的关系。
《方程》教学反思7
数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上;数学学习内容应当是现实的、有意义的、富有挑战的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动;要求关注学生学习数学的水平,更要关注他们在数学活动中所表现出来的情感与态度”。本节课的教学就是围绕新课标倡导的“自主、合作、交流、探究”来设计,通过不同的活动方式来有效地呈现教学内容。
1.问题情境的创设要有鲜明的指向性
问题情境要结合课堂,有目的的选择和设计,既要关注学习内容、学习对象的.引出与揭示,更需要从学生的需要出发,关注学生的认识和认同,为学生有效的自主建构提供时间和空间,教学反思《从问题到方程教学反思》。选择合理的问题情境,有助于学生自主学习和自主建构,这也是新课程的价值追求。
本节课创设用“天平称量食盐的质量”这一情境引入课题比较合适,因为从天平的平衡学生可以直接获得相等关系,直观、形象、易懂。在有效地激发学生兴趣的同时,又揭示了方程是表达数量之间相等关系的天平。方程是解决实际问题的有效工具。从而引入课题:从问题到方程。
2.课堂活动的设计要有多样性、层次性
本节课三个活动层次分明,安排的三个活动环环相扣,既相互独立又自然形成一个整体。活动一用数学语言诠释天平平衡的道理,使学生初步体会到方程可以描述天平所表示的数量之间的相等关系;活动二使学生体会到运用方程来表示实际问题中相等关系的一般性和优越性;活动三从不同的角度去分析问题,解决问题,进一步提升从问题到方程的认识,从而完成整个建构活动。
3.教材的使用要有创造性
对课本素材的充分利用,即每一个活动都是在课本所提供的基础上,或挖掘内涵,或利用变式,或改变题型,体现了数学课程标准中创新使用教材的要求。同时这样的设计,也使得每一个“活动”中的问题之间具有了一定的“逻辑联系”,这就使得解决问题的过程成为一个动态的、连续的过程,可以给学生留下长久的回味和对知识的深刻理解,从而有利于学生对知识的整体建构。
课堂教学是学生学习的主阵地,是学生认识数学、形成能力的场所,也是学生成长的舞台。教学设计要为学生的发展服务,以生为本,关注学生在学习过程中体验和认识,学会设计建构性活动,提升学生的认知水平和数学化水平,防止用简单的解题训练,替代数学化认识。教学应以学生为主线,关注学生的数学化认识,体现直接经验形成所经历的认知过程,变简单传授为理解而教。
《方程》教学反思8
五年级第四单元教材的设计打破了传统的教学方法。在以前人教版教材中,学着解方程之前首先要求学生掌握加、减、乘、除法各部分之间的关系,然后利用:一个加数=和-另一个加数;被减数=减数+差等关系来求出方程中的未知数。而新教材则是借用天平游戏使学生首先感悟“等式”,知道“等式两边都加上或减去同一个数,等式仍然成立”这个规律,这样才能从真正意义上很好地揭示方程的意义,进而学会解方程,还能使之与中学的移项解方程建立起联系。
在教学前,由于我个人比较偏好于传统的教学方法,总觉得用等式的性质解方程比较麻烦。为了转变自己的教学思想,更新教学观念,我深入了解新教材的`涵意——方程是一个一个等式,是一个数学模型,是抽象的,而天平是一个具体的东西,利用天平这样的事物原形来揭示等式的性质,把抽象的解方程的过程用形象化的方式表现出来,使学生更好的理解解方程的过程是一个等式的恒等变形。并能站在“学生是学着的主人”和“教师是学着的组织者、引导者与合作者”的这一角度上,()为学生创设学着此课的情境,通过直观演示,充分给学生提供小组交流的机会。在教学的整个过程中,重点突出了“等式”与“等式两边都加上或减去同一个数,等式仍然成立”这个规律,不断对孩子们进行潜移默化地渗透,促使绝大部分的学生都能灵活地运用此规律来解方程。从而,我惊喜地发现孩子们的学着活动是那么的有滋有味,进而使我很顺利地就完成了本课的教学任务。
《方程》教学反思9
新课程的改革,使得小学的知识要体现与初中更加的接轨,五年级上册第四单元“解简易方程”中进行了一次新的改革。
要求方程的解法要根据天平的原理来进行解答,也就是说要通过等式的性质来解方程,这一方法虽然说让方程的解法找到了本质的`东西。老教材中解方程的教学是利用加减乘除各部分之间的关系解决的,学生只要掌握了一个加数=和-另一个加数,减数=被减数-差,被减数=差+减数,一个因数=积÷另一个因数,除数=被除数÷商,被除数=商×除数这些关系式,不管是简单的还是复杂的方程都可以用这些关系式去解。
而我们新教材却完全不是这种方法,它是利用天平的平衡原理得到等式的基本性质,即等式的两边同时加上或减去同一个数等式不变,和等式的两边同时乘或除以同一个数(0除外),等式不变进行解方程的新教材如果能把天平的规律教学得到位,这样就能把等式性质掌握好,等式性质掌握的好了解起方程来也有规律可循了。于是,我在教学时充分地利用天平实物以及课件让学生深入地理解天平的平衡规律,从而顺利地揭示出了等式的性质。
这样在解简易方程时学生很容易掌握方法。知道未知数加(或减)一个数时,只要在方程的两边同时减(或加)同一个数,未知数乘(或除)一个数时,只要在方程的两边同时除(或乘)同一个数即可。一般不会出现运算符号弄错的现象了。
《方程》教学反思10
实际问题与方程紧跟在用等式的性质解方程的后面,是在学生会简单的运用解方程,而去把实际问题抽象成方程的过程。教学列方程解决实际问题,需要引导学生在解决问题的过程中,进一步掌握相关方程的解法,积累分析数量关系以及把实际问题抽象为方程的经验,进而适时地把获得的知识和方法应用于解决其他一些类似的问题。
例1,相对而言比较简单,但是对于学生却仍旧是一个不容易接受的难点,他们能够清楚的知道用4.21-0.06=4.15(m),但是却没办法把这样的式子用方程抽象概括出来。
例1的教学,我是按照“求谁设谁”的思路来讲的。
第一步,看一看求的是谁?学生很明显的就能够知道求的是原跳远记录,而求得是它,我们就把它设成x,而这个时候,我便教授了未知量,即我们不知道的量就是未知量,所以求谁,谁就是未知量。
第二步,找关系。找的关系就是题目中告诉我们的。比原纪录多,在数学上就用到了四则运算的加,也就能够得到数学关系上的原纪录+超出部分=小明的成绩。
最后列式,则把具体的.数字带进去,原纪录是x,超出部分0.06,小明成绩4.21,列的式子也就变成了x+0.06=4.21.
将实际问题与方程的解法来分步的教给学生,学生学起来明显的变得轻松,但是找未知量对学生而言还存在着一些困难。
例如做一做中的“我们拿桶接了半小时,共接了1.8kg的水,求每分钟浪费多少水?”明明我们看来很简单的问题,学生却找不到未知量应该是什么,只有极少的同学能够知道要把每分钟浪费的水设成未知数x。
这就让我意识到了,在方程里,有很多变化的问题,学生不能够把握,因此在设计下一节课的时候,我在一开始就让未知量在条件中变没了,组织学生根据之前积累的知识去寻找关系,具体设置的题目有这样差不多的几个:
1、长方形的长是6m,面积是24平方米,宽是多少?
2、小明走了半个小时,走了120m,小明每分钟走多少m?
3、小红买了5只钢笔,花了24元,每支钢笔多少元?
像这样的,未知量在问题中的,让学生直接去问题里面看,这个时候,考验学生的就变成了学生的积累情况了。
1、考验的是面积的计算公式
2、考验的是速度=路程÷时间
3、考验的是单价=总价÷数量
而对于题目中的“比去年高”、“超过原纪录”、“二倍”、“二倍少”……学生根据题意用加减乘除列式,学生掌握的情况则比较好。
用方程解决生活中的实际问题,就是让学生找准未知数,读懂题目中的数量关系,而日常规律的积累也占据着十分重要的位置。
所以,在做方程联系实际的时候,要加强学生对题意的理解,也要加强学生日常规律的积累,而找到关系去解方程更是要不断的去加强练习。
《方程》教学反思11
课堂从表演天平开始,姬亚航表演的天平让学生哄堂大笑。马明俊的天平表演的兢兢业业,认认真真。六个式子,在轻松中从他们的身上写到了黑板上,接下来就是这节课的关键地方了。问:如果让你把这几个式子进行分类,你会怎么分?孩子们在默默的写着自己的思考,我在教室里巡回的看着他们的精彩。有按是否有字母分成两类的,有按照是否是等式的分成两类的,有这两类都写,但徘徊的,(在他们心中,可能只是有一种分类是正确的)还有些别出心裁的把自己分类后的式子用长方形或圆形圈起来的,这不就是韦恩图的雏形吗?在五个学生展示完自己的分类作品之后,我明确了按照是否是等式的分类方法,对另外一种分类也进行了肯定。再问:如果让你把这几个等式再分类的话,你会怎么分?这里已经不需要在思考了,按照是否有字母的标准就水到渠成了,什么是方程也就自然的在学生心目中有了答案:含有字母(未知数)的等式。像学生的这些想法我能在课前预设吗?答案是否定的,我只能根据课堂的进程随时调控,而在一节10分钟的微课上,我是讲不出这些东西的。课堂最后一个环节,在以前就见过方程和从题目中找天平中继续着,特别是从题目中找天平,我觉得是非常好的一种方式,题目中的天平,不就是我们一直所说的等量关系吗?而找等量关系又是许多孩子的难点,在方程的第一节课就给他们这样的印象,用比找等量关系更可爱的找天平让他们去思考,对于他们以后用方程解题无疑开了一个好头。如果说之前的认识方程是在轻松中认识的话,那么找题目中的天平则是在愉快中升华。方程是一种模型,建模的思想不就是找天平的一个过程吗?遗憾的一点是没有在这个环节层层递进,这也是自己课前准备不充分的体现,因为找天平的灵感也是在课堂上萌发的。
反思一点:
课本上的情景写式子环节,6到7个式子已经足够了,多了浪费时间,并且会剥夺学生认识方程这个主线。再次体会了教材的安排是有道理的。
反思二点:
如果非要给这节课打分,我自己打85分,更客观。不过,多少分都无所谓,76分也没有对自己造成太大的`影响,不过就是耿耿于怀一段时间。100分也不能说明什么问题,明知这样的数据有水份,虽然有些学生也写了原因:您讲课幽默,我们愿意听。上好自己的课才是关键,让学生在自己的课堂上得到最大的受益才是目的。
反思三点:
一节课没有讲过是没有发言权的,讲过了自己的思路也不一定正确。每个老师都有自己的想法,要善于学习别人的优点。但不能照搬别人的流程。关键要看执教者的立足点是什么,是为了学生,还是为了听众,是踏踏实实,还是哗众取宠。这些标准才是判断课的好坏的标准。
《方程》教学反思12
本节课例题的教学注意利用三个等量关系列出三个不同的方程,让学生自主讨论、列出,并利用学过的解方程知识尝试解方程。注意让学生比较选择,让学生明了顺着题意列方程更简洁。注意让学生总结用方程解决问题的步骤,引导总结出五大步骤后,进一步引导出每一个步骤取一个字,进而总结为“设、找、列、解、验”,比数学课本上总结的步骤更加简洁容易记忆。
在列方程解决实际问题的教学过程中,教师教的重点和学生学的重点,不在于“解”,而在于“学解”。注重的是解决问题的过程。也就是说,要让学生经历寻找实际问题中数量之间的相等关系并列方程解答的全过程。
本节课的教学设计,注重让学生分析条件、问题,让学生首先理解题意,然后让学生通过分析、交流、讨论等活动,找出等量关系,充分展示他们的思维过程,发展思维能力。 应用题的教学难点就是:如何引导学生理解题意,列出需要的数量关系式或等量关系式。在这个过程中,重要的并不是展示学生的方法如何多,因为解决办法是可以举一反三的,重要的应该是引导学生如何通过分析,找出等量关系式的过程。同时,在分析过程中,让学生掌握多种办法来分析。如通过抓关键句、关键词、关键字列等量关系式。
本节课教学设计注意总结回顾方法,让学生总结用方程解决问题的步骤,引导总结出五大步骤后,进一步引导出每一个步骤取一个字,进而总结为“设、找、列、解、验”,比数学课本上总结的'步骤更加简洁容易记忆。
在小组合作方面,本节课主要在分析等量关系,根据等量关系列方程两个环节给孩子们小组合作探讨交流的时间。纵观本节课小组合作有利于学生理解掌握题中的数量关系,找出等量关系,根据等量关系列方程。我们学校本学期开展的是基于导学案学习基础上的小组合作学习,导学案有三分之二的学生能基本完成,三分之一的学生基本不做、做的很少、干脆不做。导学案的学习非常有利于学生的学习,能加快上课的节奏,加大练习量,但对于不预习、不做导学案的学生上课效果大打折扣。基于导学案学习出现的现象是“优者更优”,“弱者被动挨打”“积弱者更弱”。关键是怎样调动学生积极性,怎样让家长配合老师,让学生做好提前预习,让学生提前预习好导学案。这样才能目的效果兼收。
《方程》教学反思13
本节借助几何画板的演示功能,使学生通过点的运动,观察到椭圆的轨迹的特征。多媒体创设问题的情境,让探究式教学走进课堂,唤醒学生的主体意识,发展学生的主体能力,让学生在参与中学会学习、学会合作、学会创新。
学生虽然对椭圆图形有所了解,但只限于感性认识,缺少理性的思考、探索和创新,这与缺乏必要的数学思想和方法密切相关。本节课从实例出发,用多媒体结合本课题设计了一对动点有规律的运动作一些理性的探索和研究。
在教材处理上,大胆创新,根据椭圆定义的特点,结合学生的认识能力和思维习惯在概念的`理解上,先突出“和”,在此基础上再完善“常数”取值范围。在标准方程的推导上,并不是直接给出教材中的“建系”方式,而是让学生自主地“建系”,通过所得方程的比较,得到标准方程,从中去体会探索的乐趣和数学中的对称美和简洁美。
在对教材中“令”的处理并不是生硬地过渡,而是通过课件让学生观察在当为椭圆短轴端点时(但这一几何性质并不向学生交待),特征三角形所体现出来的几何关系,再做变换。
《方程》教学反思14
本节课中学生学习等式的性质是没有多大的难度的,在运用等式的性质进行解方程时,难度也不是很大。课本安排了不少解方程的题目,学生都能一一解决。仔细观察课本,其实会发现课本上在慢慢增加根据具体情境列出方程并解方程的.题目。这是本单元的难点,这就需要让学生根据题目中的等量关系来写出方程。将等量关系写出方程和学生之前根据等量关系解答是不同的。
学生不太习惯,导致列的方程奇形怪状。这里有必要深入探究方程的含义。根据上节课的学习学生知道:方程是从等式演变而来。含有字母的等式才叫作方程。换言之,方程其实是一种含有未知量的等量关系的一种表达式。我们只需要将等量关系找到再将其表达成方程即可。学生出现问题的原因是以往大部分的解题经验所写出的等量关系是从结果出发来写的,一切为结果服务这样一种逆向的思维过程。而现在写出题目中的等量关系却是从条件出发的一种正向思维。
虽然在三年级时,我们学习了从条件出发和问题出发两种不同的解题策略,但这离帮助学生形成这两种思维还是远远不够的。通过这样的分析,那我们在引导孩子列方程时,就要从条件出发,找等量关系来列方程了。先要帮助学生找出等量关系,在引导孩子根据等量关系表达出相应的方程。这一点的学习时必须的。
《方程》教学反思15
本节课的主要目标是帮助学生构建式子和方程的知识体系,会用字母表示数量关系,掌握方程的有关知识。
在课前通过解读式与方程的知识,虽然有部分学生不能完整地整理所学知识,但仍可对某部分知识进行简单的整理,通过举例等的引入方式,引导学生思考这些知识之间的联系,在学生进行练习的基础上,让学生整理的知识形成一个较为完整的复习内容,突出学生在整理知识过程中的主体作用,还能加深学生对知识的理解,增强复习效果。
其实在本节课之初,并没有预料到学生对本节课知识点有很多茫然之处,以至于在教学中遇到很多学生没有反应的尴尬场面,在老师提出问题后,学生好像什么也不知道,幸亏有以前的教学经验,对此种情况进行了预设,在学生不能很好地解决问题的时候,可以先把问题放一放,等练习几道具体的例子后,思维和知识体系会逐渐明朗。
教学设计一定要考虑学生的实际情况,要从学生的已有经验出发,不能认为学过的'只要复习一下,学生就能弄懂,如用方程来解决问题时,对于简单的题目,学生做的很好,但稍复杂一点的题目,部分学生不能很好的分析题目,找出题目中的关系式。从中也看出这部分学生并没有掌握好这部分知识。在接下来的复习中,可以着重来复习这部分知识。