当前位置:范文网>教学资料>教案>小数的意义教案

小数的意义教案

时间:2023-03-13 15:18:36 教案 我要投稿
  • 相关推荐

小数的意义教案(15篇)

  作为一名老师,通常需要用到教案来辅助教学,教案有利于教学水平的提高,有助于教研活动的开展。那么写教案需要注意哪些问题呢?以下是小编整理的小数的意义教案,希望能够帮助到大家。

小数的意义教案(15篇)

小数的意义教案1

  【教学内容】

  【教学目标】

  【教学重点 】重点:理解小数的意义,掌握小数的性质和小数点位置移动引起小难点 、数大小变化的规律。

  难点:用“四舍五入”法按要求求出小数近似数。

  【教学过程】

  一、揭示课题

  这节课我们来复习小数的意义和性质。通过复习进一步理解小数的意义,掌握小数的性质以及小数点位置移动引起小数大小变化的规律,能把较大数改写成“万”或“亿”作单位的数,并能按要求求出小数的近似数。

  二、复习小数的意义

  1、做期末复习第8题(1)、(2)、(3)。

  (1)学生在书上填写,集体订正。说一说0.5、0.023的意义。

  (2)说一说小数的意义是什么?

  问:一位小数、两位小数、三位小数……各表示几分之几的数?

  2、(1)在小数里,小数部分最高位是哪一位?从小数点起,向右依次有哪些数位?每个数位上计数单位是什么?

  (2)填空。

  0.1里面有( )个0.01。 10个0.001是( )。

  10个0.1是( )。 0.1里有( )个0.01。

  三、复习小数的性质和小数的大小比较

  1、练习。

  (1)把下面小数化简。

  4.700 16.0100 8.7100 14.00

  (2)不改变数的大小,把下面的数写成两位小数。

  4.2 13.121

  ①学生做,指名板演,集体订正。

  ②问:做题时是根据什么来做的?什么是小数的性质?

  2、做期末复习第9题,第1竖行两题。

  (1)学生在书上做,指名板演,集体订正。

  (2)让学生说一说怎样比较两个小数的大小。

  3、做期末复习第10题。

  (1)先把这些数排列起来,找出最大、最小数,并和其他数一起,写好序号。

  0.1 0.012 0.102 0.12 0.021

  (2)按要求从小到大排列。

  四、复习小数点位置移动引起小数大小变化的规律

  1、做期末复习第8题(4)、(5)。

  (1)小数点向右移动,原来的数就扩大,向右移动一位、两位、三位……,原数有什么变化?小数点向左移动,原来的数就缩小,向左移动一位、两位、三位……原数有什么变化?

  问:要把一个数扩大(或缩小)10倍、100倍、1000倍……小数点应怎样移动?

  (2)学生练习,指名回答。

  2、练习。

  (1)把1.8扩大100倍是( )。( )扩大1000倍是6.21。

  (2)把( )缩小100倍是0.021。( )缩小1000倍是6.21。

  五、复习求小数的近似数和整数的改写

  1、把下面小数精确到百分位。

  0.834 2.786 3.895

  (1)学生做,指名板演。

  (2)让学生说一说怎样求一个小数的近似数。

  2、(1)把下面各数改写成“万”作单位的数。

  486700521000

  (2)把下面各数改写成“亿”作单位的数。

  460000000 7189600000

  学生在练习本上做,指名板演,说一说怎样把一个较大数改写

  成“万”或“亿”作单位的.数。

  3、把下面各数改写成“万”作单位的数,并保留一位小数。

  67100209500

  (1)学生在练习本上做,指名板演。

  (2)比较改写成“万”或“亿”作单位的数和求一个小数的近似数时要注意什么?

  4、做期末复习第9题剩下的两题。

  (1)比较25万和0.25亿大小,可以把25扩大10000倍,0.25扩大1亿倍。得到两个整数再比较大小。

  (2)学生练习,集体订正。

  (3)小结:把一个数改写成“万”或“亿”作单位的数,只要在“万”位或“亿”位后面点上小数点,去掉小数点后面的0,再在后面添上“万”字或“亿”字,反过来,一个以“万”或“亿”作单位的数,要改写成原来的整数,只要把它扩大1万倍或1亿倍就可以

  了。

  5、做期末复习第11题。

  学生在书上做,并说明理由。

  六、全课总结

  这节课复习了什么内容?

  怎样的数可以用小数表示?小数的性质是什么?小数点位置移动引起小数大小变化有什么规律?我们可以怎样比较小数的大小?

  【作业设计】

  1、0.45表示( )。

  2、把6.956 6.965 6.659 9.665 5.669 按从小到大排列是( )。

  3、把6712098600改写成“万”作单位的数是( )万,保留一位小数是( )万;改写成“亿”作单位的数是( )亿,保留一位小数是( )亿。

  4、在○里填“”、“”或“=”。

  16.36○16.63 0.36万○3600

  0.97○1.01 0.23亿○2100万

  5、100千克稻谷可出大米76千克,平均每千克稻谷出大米多少千克?

  10000千克稻谷可出大米多少千克?

小数的意义教案2

  一、设疑激趣

  师:今天我们学习的内容跟哪种数有关?你从哪里发现的信息?

  生:小数,从大屏幕上。

  师:小数的意义就是小数表示什么?那你知道吗?

  生:不知道。

  师:那我们先来回顾一下我们的“小数”朋友,你在生活中遇见过小数吗?

  生:遇见过。

  师:在哪遇见过?

  生1:在计算器上计算有余数的除法时出现了小数。

  生2:去超市买东西时会遇见小数。(师跟进说标价是小数)

  生3:卖菜时遇见小数,(一生补充说是称量重量时出现小数)

  【设计意图:让学生回顾和小数的“相遇”引出小数的生活意义,把数学和生活联系,让学生体会生活与数学的联系,以及数学的生活性,以此来激发学生的探究欲望。】

  二、探究新知

  1、小数的产生

  师:可见小数在生活中是很有用的,那今天我们就先来研究一下它是怎样产生的。刚才同学们说在标价、计量、测量时会用到小数,还有计算时会出现小数,看是这样的吗?(大屏幕出示,测量课桌的长的图片)测量结果课桌长是多少呢?

  生:(异口同声地回答)60厘米。

  师:怎样用米来作单位呢?(有几人举手)它有1米吗?(没有)那不到1米可以用什么数来表示?(生小数)用哪个小数来表示呢?

  生:一百分之六十。

  师:一百分之六十是小数吗?(不是)那是什么数?(分数)那你说可以用分数来表示,那还可以用谁来表示呢?

  生:0.60。

  师:(师提示要带上单位)0.60米。这样我们就得到了一个小数0.60。体育赛事里也有小数,(出示世界飞人的100米短跑的成绩)博尔特以多少的成绩夺冠?

  生:9.58秒。

  师:出示一次数学检测的成绩98.5分,也是检测,再来一组口算。

  出示口算:

  10÷10= 1÷10=

  100÷10= 1÷100=

  1000÷10= 1÷1000=

  【设计意图:兴趣是最活跃的心理成分,是一种带趋向性的心理特征。苏霍姆林斯基也说过:如果教师不设法使学生产生情绪高昂和智力振奋的状态就急于传授知识,不动情感的脑力劳动只会带来疲倦,没有欢欣鼓舞的心情,没有学习的兴趣,学习就会成为学生的负担。因此,在教学中,我创设了超市物品的价格、跑步成绩、身高、体重、体温等情境,让学生感到亲切,引起情感共鸣,体验身边处处有小数。同时,让学生体验测量课桌的长,使学生体会到在实际测量中有时会得不到整数值,必须用新的数来表示。进而又让学生进行口算,让学生动手操作、口算,亲身体验 小数是怎样产生的,激发学生的积极性和主动性。】

  生: 0,赶紧改成1。

  师:非常欣赏他知错就改的精神,但我更希望你能把问题完整的回答下来,语言叙述要准确,(再次完整的回答)。

  师:1÷10=?(没人举手)那先来想想这道算式表示的意义是什么?

  生:1里面有多少个十。

  师:还可以用那句话来说?

  生:把1平均分成10份,每份是几?都说是十分之一。

  师:计算结果出现不是整数时,我们可以用以前分数表示,还可以用小数来表示。谁知道十分之一等于多少呢?(学生都愣了)十分之一是多少呢?用小数多少呢?(一生说是0.1)对吗?先留着,不知道,画一个问号。下边1÷100=?(0.01)用分数怎样表示呢?(一百分之一)那1÷1000=? 就是把1平均分成1000分每份是多少?(一千分之一)那好我们一起来看一下(出示好几张图片)

  师:刚才在进行计算和测量时,往往得不到整数的结果。这时就可以用小数来表示,这就是小数的产生,存在的生活意义。

  【反思:教师太过着急了,没有耐心等待孩子的思维发展,没能和上学生的心弦。原本是等孩子们经历完三道计算后再引出小数的,但是一次就出来了。所以小数的产生没能顺理成章的出现。】

  2、教学小数的意义

  师:能不能把刚才得到的小数读出来呢?从左往右,要学生一起读。你能不能把这几个小数分成两类呢?

  0.85 9.58 38.2 0.6 39.4 98.5

  生:0.85 9.58是一类,其余是一类。

  师:能不能说说你的分类理由?

  生:后面是两位、一位。

  师:她说是后面,(一生即使补充是小数点后面)说得真好,来欣赏一下,(追问,指着0.85 9.58问)小数点后面是几位呀?(两位)那我们就把它称作两位小数,(指着38.2 0.6 39.4 98.5)小数点后面有几位?(一位)那就叫(学生根据直觉说)一位小数。那小数肯定还会有?

  生:三位小数,四位小数,五位小数……

  师:小数的位数是无尽的,研究小数也要从简单入手,咱们就先从研究一位小数入手。我们借助常用的一个长度单位来研究,(出示米尺图)请读出一句话。

  【设计意图:让学生通过观察思考及演示,层层设问,利用旧知逐步将学生引向新知。学生对小数的位数有一定的理解,渗透化难为易的数学研究思想。】

  【反思:本环节的分类有两种,一种是按小数的位数分类,另一种是按照整数部分是否0(是否纯小数)来分,一种是为本节的小数意义作铺垫,一种是为小数的后续研究做伏笔,但自己却把第一种分法板示后,把后者遗忘了。】

  教师出示:把 1米平均分成10份。

  师:把1米平均分成10份,每一份是多长?

  生:10厘米。

  1分米。

  师:1分米和10厘米相等吗?(相等)都可以,那你能不能用一个分数来表示呢?

  生:一百分之一。

  生:十分之一。

  师:把一米平均分成了十分,那分母就应该是几?(10)十分之一米可以用哪个小数来表示?(0.1米)观察1分米,1/10米,0.1米它们都是指把一米平均分成10份,其中的一份的长度,那你说这三个数是否相等?(等于,完成板书1分米=1/10米=0.1米,擦掉问号)1分米是其中的几份呢?

  师:这个数如何表示呢?(4/10米,0.4米)这两个长度一样吗?(一样)那就可以用等号连接。谁能说一下4/10米里面有多少个1/10米?(4个)

  师:你能表示这个数吗?(7分米,7/10米,0.7米)那你能说说0.7里面有多少个0.1吗?(异口同声,7个)

  擦掉单位发现:1/10 =0.1,那你以后看到0.1就要想到1/10,0.1就是谁了?(1/10)0.4里面有( )个1/10,0.4就是分数( )。0.7里面有( )个1/10,0.7就是分数( )。

  师:你发现分数与小数的联系了吗?

  分母是10的分数,可以写成一位小数。一位小数表示十分之几,它是的计数单位是十分之一,也就是0.1。

  师:0.2米表示什么?0.8米呢?你再说两个一位小数,并说出他们的意义。

  【设计意图:在后面的教学中实现知识的正向迁移,理解分数与小数之间的联系。进而理解小数的意义。】

  (2)认识两位小数

  师(引导学生观察米尺):把1米平均分成100份,每份是多少呢?

  生:是一百分之一米。

  师:还可以怎样表示呢?

  生:0.01米,1厘米。(补充板书)

  师:一百分之一米,它的分母是多少?(100)分母是100的分数写成了几位小数?(两位小数)你还能把几厘米表示成这样的数吗?你想表示几厘米就表示几厘米?(老师是涂色吗?)不是,是自己写一个几厘米把它用小数,分数表示。

  【反思:问题提出的较为模糊,所以自己不断地去补充、重复问题。就这还有孩子不知我说啥,还是自己的问题指向目标不明确造成的。】

  交流自己写的:

  师:你写的是多少?

  生1: 7厘米,是7/100米,0.07米。

  师:你能猜一猜两位小数与什么样的分数有关系吗?

  (指名回答并板书:1厘米=1/100米=0.01米;7厘米=7/100米=0.07米。)

  生(口答):0.01里面有( )个1/100,0.20里面有( )个1/100, 0.32里面有( )个1/100,并说出用哪个分数来表示。

  引导发现:两位小数表示百分之几,它的计数单位是百分之一,也就是0.01。

  师:0.32里面有多少个百分之一呢?(32个)这就是小数0.32表示的意义。

  (3)认识三位小数

  出示:一位小数表示十分之几,它的计数单位是十分之一,可以写作 0.1。

  两位小数表示百分之几,它的计数单位是百分之一,可以写作0.01。

  师:刚才我们认识了一位小数、两位小数的意义和计数单位,那以此类推,你知道

  三位小数表示什么?(千分之几)它的计数单位是(千分之一),可以写作(0.001)。

  四位小数表示什么呢?计数单位呢?可以写作?五位小数呢?小数的位数能说完吗?……(不能)是无穷的。

  师(借助米尺,使学生明确):把1米平均分成一千份,每份是多少?(1毫米)

  1毫米是千分之一米,还可以写成0.001米来表示。(板书:1毫米, 米,0.001米 )

  【设计意图:数学思想方法是高一级的知识,是对知识的一种本质揭示,是数学知识结构的灵魂。在教学中,既要注重学生知识的获取和能力的培养,更应注重数学思想方法的渗透。本节课中,在教学1分米=1/10米=0、1米时,先让学生初步感悟十进制分数与一位小数之间的联系,进而由此迁移类推得到许多一位小数,让学生比较这些小数的`共同点,归纳出一位小数的意义。在此基础上又让学生迁移,类比认识二位小数、三位小数,从而归纳出小数的意义。后又通过观察、思考、类推出三位、四位小数的计数单位。】

  (4)抽象、概括小数的意义

  师:小数是什么?

  补充并概括:小数其实就是分母是10、100、1000……的分数的另一种书写形式。分母是10、100、1000、……的分数可以仿照整数的写法,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几……的数叫做小数。

  师:0.85是几位小数?它就是哪个分数呢?它的意义是什么呢?0.85表示什么?

  生:85个0.01,还可以表示把一个整体平均分成100份,有这样的85份。

  师:这就是0.85这个小数表示的意义。0.1、0.01、0.001……这些是小数的计数单位,那整数的计数单位有哪些?

  生:个、十、百、千、万……

  师:每相邻两个计数单位之间的进率是多少?(10)接下来我们来研究小数的计数单位。

  3、小数单位间的进率

  师:这是一个正方形,可以用“1”来表示,(演示把它平均分成十份,其中一份涂红色问),这是怎样分的?(十分之一、平均分)怎样分?平均分成10份,涂色部分是其中的几份?(1份)可以用哪个数来表示?(十分之一)还可应用谁来表示?(0.1)1里面有多少个0.1呢?(10个)

  师:(把图继续分成100份)发生了怎样的变化?平均分成了多少分份?(100份)其中的一份用哪个数来表示?(0.01、一百分之一)那0.1里有几个0.01呢?(10个)那小数计数单位之间的进率也是10。把这个正方形平均分成1000份呢?每份是多少?0.01里面有多少个0.001?那我们就接着把小数的计数单位写在整数的计数单位后面,并用小数点隔开,这样就把整数和小数整合了。

  【反思:这个问题的抛出有点突然,显得计数单位更加抽象了,不如换成先让学生猜测它们之间的进率,在通过正方形平均分的动手操作、验证。借助正方形的十分之一、百分之一、千分之一来揭示小数的计数单位间的进率。】

  三、巩固练习

  师:9. 58的9在哪一位上?(个位)表示什么?(9个一)这个5表示什么?(5个0.1)8呢?(8个0.01)

  1、下面括号里能填几。

  0.1米里有( )个0.01米,0.01米里面有( )个0.001米。

  得出:相邻两个计数单位之间的进率是10。

  师:现在你知道为什么要借助长度来研究小数的意义吗?(知道)因为毫米、厘米、分米、米每相邻的单位之间的进率也是10。

  【设计意图:借助长度单位理解,再次得出每相邻两个计数单位之间的进率是10。重点理解“相邻”二字的含义,突破难点,巩固分数与小数之间的关系,加深对小数意义、小数计数单位及单位间进率的理解,并达到学以致用。】

  2、(1)用合适的数表示图中的涂色部分。

  (2)用合适的数表示图中的空白部分。

  3、先写出一个两位小数,再用阴影表示这个小数。(交流自己写的小数及其意义)

  4、找朋友。

  四、课堂总结

  师:以前学过整数、分数,今天又学习了小数,通过今天的联系我们知道它们之间有一定的联系?

  生:每相邻的计数单位之间的进率都是十。

  生:小数就是分数。

  生:小数的计数单位是0.1、0.01、0.001……也可以用分数十分之一、百分之一、千分之一……来表示。

  五、你知道吗

  了解小数的起源、发展史。

小数的意义教案3

  教学目标:

  1、借助计数器,掌握小数的数位。

  2、根据小数的数位顺序表,能理解数位顺序表上的计数单位,以及进率关系。

  3、结合具体情境,能抽象出小数的基本性质的具体内容,并能牢固掌握和灵活运用。 教学重点:

  掌握小数的数位和计数单位。

  教学难点:

  掌握小数的基本性质。

  教学准备:

  课件、计数器

  教学过程:

  一、复习旧知,导入新课

  过渡:同学们,通过前几节课的学习,我们认识了小数的意义,接下来老师要来考考你们,看你们掌握得怎么样?

  (课件出示)1、填空。

  3写成小数是( ) 10

  660.56表示()写成小数是() 100

  6780.625表示( )写成小数是( ) 10000.4表示( )

  2、读一读下面一段话中的小数。

  北京地铁10号线列车的最高运行速度是80千米/时,约为22.222米/秒。

  师揭题:今天这节课,我们首先要来研究小数“22.222”中每个数字的含义。(板书课题:小数的意义(三))

  二、动手操作,探究新知

  1、认识数位。

  出示计数器,师问:这个计数器有什么特点?

  学生观察后汇报

  师小结并引导学生拨数:同学们的`观察都非常仔细,??百位、十位、个位、十分位、百分位、千分位??都是小数的数位。小数点的左边依次是个位、十位、百位??右边依次是十分位、百分位、千分位??那你们能在这个计数器上拨出“22.222”吗?学生尝试在计数器上拨数,师指名上台演示。

  课件出示拨数情况,引导学生认识:

  “22.222” 中有5个“2”,这5个“2”所表示的意义是不同的。小数点右边第一1个“2”在十分位上,它表示2个0.1.

  师提问:小数点右边第2个“2”在百分位上,它表示2个

  引导学生思考后回答:11,用小数表示是0.1,所以这个“2”也可以表示210101,它也可以表示多少? 1001可以写成0.01,所以这个“2”表示2个0.01. 100

  师追问:说得很有道理,那最后一个“2”在什么位置,表示多少呢?

  学生思考后回答:最后一个“2”在千分位上,表示2个1,也可以表示2个0.001. 1000

  师引导学生再次思考:小数点左边两个2分别表示多少?

  学生先独立思考,再小组内交流,最后集体汇报。

  2、认识计数单位及计数单位之间的进率。

  师引导思考:整数的数位顺序表是个位、十位、百位??,那么小数的数位顺序是怎样的呢?

  课件出示小数的数位顺序表,介绍数位名称及对应的计数单位:

  小数点右边第一位是十分位,计数单位是十分之一(0.1);

  小数点右边第二位是百分位,计数单位是百分之一(0.01);

  小数点右边第三位是千分位,计数单位是千分之一(0.001);

  小数点右边第四位是万分位,计数单位是万分之一(0.0001);

  课件出示整数的数位顺序表,进行小组讨论:看一看,比一比,在数位顺序表上整数部分与小数部分有何异同?

  学生讨论后汇报交流,师生共同总结:

  相同点:相邻计数单位间的进率都是10.

  不同点:整数部分在小数点的左边,数位顺序是从右往左依次排列,计数单位由小到大,只有最小的计算单位——1,没有最大的计算单位;而小数部分在小数点的右边,从左往右依次排列,计数单位由大到小,没有最小的计数单位,只有最大的计数单位——0.1.

  师强调:小数的半数单位也是“满十进1”,引导学生观察教材第6页“看一看,说一说”的图片,进而发现:10个0.1元是1元;10个0.01元是0.1元,再次明确小数的计数单位是“满十进1”。

  三、巩固运用,拓展提升

  1、出示教材第7页“试一试”情境一:同样的毛巾,小熊商店每条5元,小狗每条5.00元,这两个毛巾的价格一样吗?

  引导学生讨论后交流汇报。

  2、出示教材第7页“试一试”情境二:涂一涂,你发现了什么?

  让学生自主涂色,并汇报:0.6和0.60一样大。

  师提问:哪位同学能够运用我们学过的数位和计数单位的相关知识来解释一下为什么0.6和0.60一样大?师归纳小结小数的基本性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。

  3、即时练习。

  课件出示题目:下面的数中哪些“0”可以去掉?哪些“0”不能去掉?

  3.203.09 6.06 50.44 5.700 200.04

  四、课堂小结

  通过这节课的学习,我们学会了哪些知识?

  板书设计:

小数的意义教案4

  教学内容来源:

  小学四年级数学(下册)第四单元《小数的意义和性质》

  教学主题:

  《小数的意义》

  课时:

  第一课时

  授课对象:

  四年级学生

  学习目标:

  1.通过结合生活经验和实际测量活动了解小数的产生,体会小数产生的必要性。经历抽象、推理等活动明确一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

  2.借助熟悉的十进制关系的现实原型多角度理解小数与分数的关系,通过自学,理解计数单位0.1、0.01、0.001。通过数数的活动,知道相邻两个计数单位间的进率是10。

  教学重点:

  理解一位、两位、三位小数的意义,知道相邻的两个计数单位间的进率是10。

  教学难点:

  理解一位、两位、三位小数的意义。

  教学准备:

  米尺、课件。

  教学过程

  教学环节学生的学教师的教评价要点

  环节一复习导入,情境感知教师利用米尺和书本的导图,深刻体会小数的必要性;量一量数学课本的长度,小组交流汇报表示方法。教师引导学生观看导图,通过分享生活中用到数的例子,引出小数,感悟小数产生的必要性。引导学生小组合作,用米尺测量数学课本的长度,再交流汇报表示方法,直观感知小数的必要性。进而引出今天的主题“小数的意义”。通过说一说,想一想,量一量,会发现小数应用的广泛性,进一步理解和感受小数产生的'必要性。

  环节二借助直观,迁移推理学生思考并归纳总结小数的表示方法,理解并归纳出一位小数的意义。小组合作,独立探究两位小数和三位小数的表示方法,理解并归纳出两位小数和三位小数的意义。教师借用米尺,直观描述:“把一米的尺子平均分成10份,每份是1dm,用米作单位,用分数表示十分之一米,也可以用0.1m来表示”,引导学生思考说出用分数和小数表示3dm和7dm;引导学生观察并归纳总结,描述自己的发现,体会抽象的数学思想方法,理解一位小数的意义。引导学生借助直观迁移,通过小组合作交流,独立探究的方法理解两位小数和三位小数的具体意义。会理解并归纳出一位小数的意义,会探究出两位小数和三位小数的意义,体会抽象和推理的方法,达成目标1。

  环节三自主探究,获得新知学生自学课本,交流汇报自己的收获,说一说小数的计数单位及自己对相邻两个计数单位间的进率的理解。提问:“默读课本,看看还有什么新的发现?”引导学生自学课本,了解小数的计数单位和相邻两个计数单位间的进率。会说出小数的计数单位是0.1、0.01、0.001及相邻两个计数单位间的进率是10,达成目标2。

  环节四巩固新知,学以致用学生独立解决“找朋友”,动动手“写一写”,集体交流“说一说”。呈现“夯实基础”,“培优提升”两个层次的习题,引导学生找一找,写一写,说一说,巩固新知。会独立解决习题,达成目标1,2。

  环节五回顾反思,归纳小结学生尝试总结。教师引导学生自主归纳:“1.通过今天的学习,你有哪些收获?2.你是通过什么方法获得的?”教师适时补充。至少能说出一方面的收获。会说出小数的意义及运用抽象和推理的数学思想方法。

  课后反思:

  本节课通过创设生活情境,帮助学生体会了小数产生的必要性,激发了学生的兴趣。

  通过课中学生说一说,想一想,量一量,会发现小数应用的广泛性,进一步理解和感受小数产生的必要性。学生的积极性不高,今后设计时应该站在学生的角度上,多设计学生喜爱的教学形式。不过整个学习过程层层递进,学生通过想一想、测一测、数一数、说一说等多种活动进行观察、思考,逐步学习到小数的意义。这样的教学不仅符合学生的认知规律,而且渗透了数学思想方法,既符合学生的认知规律,又有利于增加学生的实际认知,让学生从自己的身边发现数学知识,进一步培养学生的能力,理解小数的意义。

  教学过程应该是以学生为主体的过程,我今后会多让学生自己去发现、探讨、解决问题,他们身上有很大的潜力有待挖掘。作为教师,我们要相信自己的学生,他们可以学的更好。

小数的意义教案5

  [教材分析]

  这节课是学生在三年级学习了“小数的初步认识”的基础上的继续学习和深入理解。学生在日常生活中感受到小数的大量应用,同时在三年级的学习中,对于小数的读法,小数在价格上表达的具体含义都已有所了解。因此,通过本节课的学习,要使学生对于小数产生的实际价值有所认识,抓住数与数之间的紧密联系,了解小数的来源,掌握小数的意义,能正确地把分母是10、100、1000……的分数改写成小数的形式。同时,通过与整数、分数知识的紧密结合,使学生体会到小数的计数单位和进率,从而对于数有一个比较全面的认识,为后续学习做好准备。

  [教学内容]

  义务教育课程标准实验教科书《数学》人教版四年级下册50页、51页例1。

  [教学目标]

  1.使学生经历实际测量等活动,了解小数的产生过程。

  2.通过实际情境感悟分数可以用小数来表示,理解小数的意义,认识小数的计数单位和进率。

  3.在探讨中培养学生学习数学的兴趣和分析能力、表达能力及逻辑推理能力,并结合小数产生的历史,进行爱国注意教育。

  [教学重点、难点]

  理解小数的意义

  [课前准备]

  课件,课前调查的数据资料

  [教学过程]

  (一)创设情境

  1.感受生活中整数和分数的运用。

  (1)课件出示。

  一张桌子、六把椅子、一个圆形花坛、白色占整个圆形的八分之一

  (2)师:看来在我们的生活中,整数的应用是非常普遍和广泛的。当我们

  得不到正好的整数结果时,可以用分数来表示。

  2.感受生活中小数的运用,质疑反思,体会小数的产生。

  (1)学生介绍课前搜集到的数据信息

  (2)师:小数在生活中的应用也非常广泛,看到这些,你们有什么疑问吗?

  (3)抓住现实信息引发思考

  提问:生活中,我们在哪些时候会常常用到小数?

  让学生自己动手测量桌子的长度或数学书封面的长和宽

  3.揭示课题:

  看来小数的存在也有它一定的价值,这节课我们就来研究小数的产生及意义。

  (设计意图:在生活中,整数的应用非常广泛,但我们在测量时,往往又得不到整数的结果,可以应用分数来解决。生活中小数的广泛存在又给学生造成认知上的冲突,从而引发学生的疑问,引起探讨。)

  (二)研究改写方法,探究小数的意义

  1.1米

  初步探究一位小数的改写。

  (1)出示线段图。

  (2)提问:看到上面的图,谁能用分数或小数表示出其中的一份?

  ①(学生预设:把1米平均分成10份,每份是米。)

  ②也可以用小数来表示,每一份是0.1米。

  ③其中的两份用小数可以怎样表示,你怎么想?

  (学生预设:把1米平均分成10份,每两份是米,小数是0.2米)

  ④图中还有哪部分表示0.1?(请学生指图)

  (3)理解0.2并感知0.1与0.2有什么关系

  ①哪部分表示0.2?想一想对0.2你还能说些什么?

  ②0.2与0.1有什么关系?

  (0.1+0.1=0.2,0.2是两个0.1…)

  ③对于其中的三份、四份、五份…你有什么想法?选择其中的一个和同学说一说。

  ④对比:米与0.1米,米与0.2米…有怎样的关系?

  ⑤观察米=0.1米,米=0.2米,…你发现了什么?

  ⑥提问:一位小数表示什么?

  2.在迁移辨析中理解两位小数的改写。

  (1)出示教材中的图:如果把1米平均分成100份,其中的1份用分数怎样表示?用小数怎样表示?

  (2)提出要求:100份中的1份大家会改写成小数形式了,那么把其中的几份改写成小数的形式呢?小组合作,涂上阴影,说出分数和小数,并说说小数表示的意义。

  (根据学生的回答板书例如:米=0.01米,米=0.03米,米=0.12米)

  师:同学们你们观察上面这些算式,你们有什么发现?

  (学情预设:分母是100的分数可以写成两位小数。也可以说两位小数表示百分之几)

  (3)练习:说出小数的意义

  课件呈现:0.6、0.09、0.12、0.86、0.1

  (设计意图:让学生根据一位小数表示十分之几,猜想出两位小数和什么样的分数有关?有意识地促进“迁移”,让学生体验成功,培养学生的学习兴趣和信心。)

  3.深入、灵活理解三位小数的改写

  (1)师:如果把1米平均分成1000份,你会把其中的一份或几份改写成小数吗?

  (2)根据前面小数的意义,分母是1000的分数可以改写成几位小数?

  (3)课件出示三组数据。

  第一组:1/100023/100026/1000

  第二组:3/100043/100089/1000

  第三组:9/100065/10008/1000

  (4)提出要求:请小组合作自选一组分数,一边改写一边讨论。

  4.:我们知道了一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几。把分数改写成小数的形式,使人们应用起来更加方便、简单。

  5.拓展:请同学们想一想四位小数表示多少?五位小数呢?

  (设计意图:由借助直观认识一位小数表示十分之几,两位小数表示百分之几,三位小数表示…到通过联想认识四位小数,五位小数表示的意义,再到抽象概括小数的意义,学生经历了知识的形成过程,让学生在获取数学知识的同时,获得学习的方法,发展提高能力。)

  (四)认识小数的`计数单位和进率。

  1.回顾整数的计数单位

  师:回忆一下,我们都已经学习了哪些计数单位?

  (个、十、百、千、万、十万、百万、千万、亿)

  2.说说它们之间有什么关系?

  3.1个一是10个(),是100个(),是1000个(),是10000个()…

  4.提问:所以小数的计数单位应该是什么?

  5.教师:这十分之一,百分之一,千分之一,万分之一…就是我们今天研究的分母是10的分数写成小数,小数部分是多少表示的就是多少个十分之一,分母是100的分数写成小数,小数部分是多少表示的就是多少个百分之一…,所以,十分之一、百分之一、千分之一…就是小数的计数单位,它与整数计数单位一起形成了数学的一个完整的知识体系。

  6.依照这一体系,你能说说小数的计数单位间的进率吗?

  (五)巩固练习

  1.填数(数学书第51页“做一做”)

  2.比一比(数学书第55页练习九第1题)

  3.对口令游戏:一方说分母是10、100、1000…的分数,另一方说出对应的小数;一方说小数,另一方说出对应的分数。

  (六)畅谈收获

  通过这节课的学习,你有哪些收获?还想了解什么?

  (设计意图:学生自己所学内容,培养了学生的概括能力和语言表达能力。)

  [板书设计]

  小数的产生和意义

  1分米=1/10米=0.1米1厘米=1/100米=0.01米1毫米=1/1000米=0.001米

  2分米=2/10米=0.2米3厘米=3/100米=0.03米127毫米=127/1000米=0.127米

  3分米=3/10米=0.3米12厘米=12/100米0.12米74毫米=74/1000米=0.074米

  一位小数表示十分之几二位小数表示百分之几三位小数表示千分之几

  小数的计数单位:十分之几,百分之几,千分之几…,分别0.1、0.01、0.001……

  每相邻两个计数单位之间的进率为10。

小数的意义教案6

  设计说明

  针对本节课的教学内容和知识特点,在教学设计上突出了以下几点:

  1.注重铺垫,以旧引新。

  本节课通过对整数数位顺序表的回顾,引导学生运用迁移、类比的方法学习小数数位顺序表,体会知识的内在联系。

  2.自主构建,交流补充。

  教材为学生呈现了小数数位顺序表,数位和计数单位一一对应。教学设计引导学生认真观察数位顺序表,并且同具体的小数相结合,自主建模,通过交流使学生掌握小数的数位顺序和计数单位,明确小数的相邻两个计数单位间的进率是10,为学习小数的加法和减法奠定基础。

  3.借助生活经验理解小数的性质。

  借助教材7页“试一试”的情境引导学生进行观察、讨论,激发学生的学习兴趣,继而引出本节课所要探究的`问题——小数的末尾添上“0”或去掉“0”,小数的大小是否改变?鼓励学生大胆猜想,利用生活经验进行判断,并用多种方法进行验证,引导学生主动探究,培养学生发现问题、分析问题和解决问题的能力。

  课前准备

  教师准备 PPT课件 计数器

  学生准备 数位顺序表

  教学过程

  第1课时 小数的意义(三)(1)

  ⊙复习导入

  1.整数的数位顺序是什么?(个位、十位、百位、千位……)整数的计数单位依次是什么?[一(个)、十、百、千……]相邻的两个计数单位间的进率是多少?(相邻的两个计数单位间的进率是10)

  2.说出下面各数中的“6”表示的意义。

  236 6097 65 36000 486020

  3.小数和整数一样,也有计数单位,也按照一定的顺序排列,各数位上的数表示的意义也不相同。这节课我们就来研究一下小数的数位顺序。

  设计意图:通过复习整数数位顺序表及各数位上的数所表示的意义,唤起学生对已有知识的回顾,同时也为新知识的学习做好铺垫。

  ⊙探究新知

  1.观察情境图,交流信息,提出问题。

  (1)观察情境图,交流信息。

  师:同学们,你们坐过地铁吗?你们知道地铁的最高运行速度是多少吗?(课件出示教材6页例题情境图)

  师:说一说你从画面上获取了哪些信息。

  预设 生1:通过观察画面,我知道了北京地铁10号线列车的最高运行速度是80千米/时。

  生2:通过观察画面,我知道了北京地铁10号线列车的最高运行速度约为22.222米/秒。

  (2)提出问题。

  师:22.222各数位上的数都是2,你知道其中的“2”分别表示多少吗?

  2.认识小数部分的数位,理解各数位上的数的意义。

  (1)观察计数器,认识小数数位。

  师:(出示计数器)计数器上有一个小数点,小数点右面第一位是十分位,第二位是百分位,第三位是千分位……

  (2)借助计数器说一说22.222各数位上的数分别表示的意义。

  ①在计数器上拨出22.222。

  ②讨论交流各数位上的数的意义。

  师:十分位上的“2”表示多少?

  引导学生看下面的直观图,明确十分位上的“2”表示2个,也可以表示2个0.1.然后完成填空。

  ③回顾:十位和个位上的“2”分别表示多少?

小数的意义教案7

  一、教学过程

  (一)引入新课

  1.同学们已经初步认识了小数,小数是怎样产生的?小数的意义是什么呢?这节课我们就来学习小数的产生和意义。

  2.揭示课题:小数的意义与读写 (板书:小数的意义与读写)

  (二)展示目标(见教学目标1)

  二、自主学习

  (一)出示自学提纲

  自学提纲(自学教材P50页例1,并完成自学提纲问题,将不会的问题做标注)

  1.把1米平均分成10份,每份是多少米?3份呢?

  2.分母是10的分数可以写成几位小数?

  3.把1米平均分成1000份,每份长多少?分母是1000的分数可以写成几位小数?

  4.思考什么是分数?什么是小数?

  (二)学生自学(学生对照自学提纲,自学教材P49页例1,并完成自学提纲问题,将不会的`问题做标注)

  (学生自学,教师在不干扰学生的前提下巡回指导,发现共性问题,以掌握学生学情)

  三、合作探究

  (一)小组互探(自学中遇到不会的问题,同桌或学习小组内互相交流。把小组也解决不了的问题记好,到学生质疑时提出,让其他学习小组或教师讲解)。

  (二)师生互探

  1.解答各小组自学中遇到不会的问题。

  (1)让学生提出不会的问题并解决。

  (2)教师引导学生解决学生还遗留的问题。

  2.交流小数的意义。

  (1)这是把1米平均分成了多少份?根据以上学习你能知道什么?学生以小组为单位进行讨论。

  (2)抽象。概括小数的意义。

  把1米看成一个整体,如把一个整体平均分成10份。100份。1000份……这样的一份或几份可以用分母是多少的分数表示?引导学生答出可以用十分之几。百分之几。千分之几这样的分数表示。

  (3)什么叫小数?引导学生讨论。

  (4)师生共同概括:

  分母是10.100.1000……的分数可以写成小数,像这样用来表示十分之几。百分之几。千分之几……的数叫做小数。(投影出示)。小数是分数的另一种表现形式。

  3.交流小数的计数单位。

  四、达标训练

  1.填空。

  (1)0.1是( )分之一,0.7里有( )个0.1。

  (2)10个0.1是( ),10个0.01是( )。

  (3) 写成小数是( ), 写成小数是( )。

  2.课本做一做。

  3.判断:

  (1)0.40里面有4个0.01。( )

  (2)35克=0.35千克 ( )

  4.把小数改写成分数。

  0.9 0.09 0.0359

  课堂小结:谈谈你有什么收获?有什么感受?还有问题吗?(学生总结不完整的地方,教师要适当补充总结)

  五、堂清检测

  (一)出示堂清检测题。

  1.填空题。

  (1)小数点把小数分成两部分,小数点左边的数是小数的( )部分,小数点右边的数是它的( )部分。

  (2)小数点右边第二位是( ),计数单位是( )。

  (3)一个小数,它整数部分的最低位是( )位,小数部分的最高位是( )位。它们之间的进率是( )。

  (4)千分位在小数点( )边第( )位,它的计数单位是( )。小数点右边第一位是( )位,它的计数单位是( )。

  (5)有一个数,百位和百分位上都是5,十位个位和十分位上都是0,这个数写作( ),读作( )。

  2.读出下面各数。

  0.78 5.7 0.307 8.005 6600.506 88.188

  3.写出下面各数。

  零点一二 七点七零七 二十点零零零九

  四千点六五 零点九一八 五十三点三五三

  (二)堂清反馈:

  布置作业

  教材P55页 1.2.3题。

  板书设计

  小数的意义与读写

  十分之一---------------- 0.1

  百分之一----------------0.01

  千分之一----------------0.001

  分母是10.100.1000……的分数可以写成小数,

  像这样用来表示十分之几。百分之几。千分之几……的

  数叫做小数。

小数的意义教案8

  教学目标:

  1、通过练习进一步掌握小数加减法的计算方法。

  2、通过练习进一步掌握小数加减混合运算的方法和简便计算的方法。

  3、通过活动,培养学生自主探索、合作交流的能力,动手操作的能力。培养学生综合运用知识解决现实问题,收集信息、处理信息的能力。

  教学重点:

  小数加减混合运算的方法和简便计算的方

  教学难点:

  小数加减混合运算的方法和简便计算的方

  教法学法:

  主动探究法、练习法。小组合作交流法

  教学准备:

  小黑板

  教学过程:

  一、复习导入新课

  1、复习小数的意义。

  2、怎样比较小数的大小。

  3、怎样进行小数加减的计算。

  二、展示交流。

  专题训练一:完成课本18页第一题、第二题。

  专题训练二:完成课本18页第三题

  专题训练三;完成课本18页第四题。

  专题训练四:完成课本18页第五题

  专题训练五:完成课本18页第六题。

  三、课堂小结

  四、作业布置

  完成相关配套练习。

  五、单元测试

  (一)小小知识窗看谁本领高!(25分)

  1、0.78里面有( )个0.01,3.6里面有( )个0.1。

  2、4个百、5个十、3个十分之一,组成的数是( )。

  3、0.050的计数单位是( ),它含有( )个这样的计数单位。

  4、58厘米=( )米

  540克=( )千克

  7元8角3分=( )元

  9吨40千克=( )吨

  5、小数相邻两个单位之间的进率是( )。

  6、10.1千克、1000克、1.1吨、1千克10克按从大到小的顺序排列是

  ( )﹥( )﹥( )﹥( )。

  7、在○里填上<、>、=。

  7.9○8.2

  0.09○0.12

  5.7○5.8

  3.61米○362厘米

  284克○0.284千克

  5.3米○532厘米

  8、0.8不改变大小,写成三位小数是( )。

  9、一个小数,整数部分的最低位是( )位,小数部分的最高位是( )位。

  10、□5.□5,使这个数最小是( ),使这个数最大是( )。

  (二)火眼金睛辨对错。(10分)

  1、0.3与0.300大小相同,计数单位也相同。 ( )

  2、小数点的后边添上0或去掉0,小数大小不变。 ( )

  3、4.4时=4时40分。 ( )

  4、整数加法的运算定律同样适用于小数加法。 ( )

  5、2.7和2.9之间只有一个小数。 ( )

  (三)选择。 (10分)

  1、0.9比10少( )

  A、0.1

  B、9.1

  C、9

  2、由2、4、5三个数字组成的最大的.两位小数是( )

  A、4.25

  B、2.54

  C、5.42

  3、大于4.35小于5.35的小数有( )个

  A、9

  B、10

  C、无数

  4、8080.80这个数( )位上的零可以去掉。

  A、百

  B、十

  C、百分

  5、小红在计算小数减法时,将减数3.8错看成38,得108,那么正确的结果是( )

  A、66.2

  B、142.2

  C、10.8

  (四)计算。(32分)

  1、口算:(10分)

  6.9-6=

  0.9+0.6=

  1-0.09=

  0.9+0.1=

  2.7+2.2=

  0.2+0.8=

  0.7-0.7=

  5.5+11=

  1.3-0=

  9.7-7=

  2、列竖式计算:(6分)

  27.09-9.28

  22.45-19.156

  9.07+2.88

  3、脱式计算,能简算的就简算:(6分)

  15.89-(5.89+6.98)

  4.9+12.87-5.38

  75.6-10.8-9.2

  4、列式计算。(10分)

  (1)一个数比2.02与3.28的和多1.3,这个数是多少?

  (2)从100.86里减去10.54与20.86的和,差是多少?

  (五)解决问题:(18分)

  1、五月份某运输公司一队运货30.6吨,二队运货35.08吨,三队比二队多运货2.02吨,三个队五月份共运货多少吨?(4分)

  2、妈妈买鞋用去125.4元,买袜子用去13.8元,给了售货员150元,还剩多少元?(用两种方法计算)(6分)

  3、光明小学四二班向灾区的小朋友捐款情况如下表

  小组: 第一小组、第二小组、第三小组

  钱数(元): 50.61、比第一小组少18.29、比第二小组多42.87

  (1)第三小组捐款多少元?(2分)

  (2)三个小组一共捐款多少元?(3分)

  (3)请你提出一个数学问题?并解答。(3分)

  (六)智力大比拼(5分)

  一桶油连桶重55.1千克,用去一半后连桶重30.1千克,这桶油重多少千克?桶重多少千克?

小数的意义教案9

  教学目标

  (一)熟练地掌握小数乘法和除法的计算法则,进一步理解小数乘除法的意义。

  (二)通过归纳整理,提高学生的概括能力。

  教学重点和难点

  熟练掌握小数乘除法的计算法则,提高学生计算的准确率。

  教学过程设计

  (一)归纳整理小数乘除法的意义

  1口算下面各题,并说出各算式的意义。

  15×3 15×3 15×03 15÷3

  28×2 28×2 28×02 28÷2

  25×5 25×5 25×05 25÷05

  12×4 12×4 012×04 012÷04

  2思考:

  ①小数乘法的意义有几种情况,是按什么划分的?分别是什么?

  ②小数除法的意义是什么?

  讨论得出:小数乘法的意义包括两种情况,按乘数是整数还是小数划分。当乘数是整数时,表示求几个相同加数的和的简便运算;当乘数是小数时,表示求这个数的十分之几,百分之几,千分之几,……(小数除法的意义是已知两个因素的积与其中的一个因数,求另一个因数的运算。)

  3比较归纳、整理:

  看表思考:小数乘除法的意义与整数乘除法的意义有哪些地方相同,有哪些地方不同?

  讨论完成下表:

  (二)复习小数乘除法的计算法则

  1小数乘法的计算法则。

  (1)说出下面各题的积中各有几位小数。

  23×05 214×07 275×1203 184×0026

  提问:你是根据什么确定积中的小数位数的?为什么?(小数乘法中,积中小数的位数是由因数的小数位数决定的。因数中一共有几位小数,就从积的右边起数出几位,点上小数点。因为把小数乘法转化成整数乘法,因数扩大了多少倍,积也扩大多少倍,要使积不变,就要缩小多少倍。)

  (2)根据4×25=100,75×52=3900,你能很快说出下面各题的积吗?

  ①04×25=(1);②0075×052=(0039)。

  提问:

  ①式中的因数共有两位小数,为什么积中没有小数部分?②式中的因数共有五位小数,为什么积中只有三位小数?(因为积的小数部分末尾是零,根据小数的性质被划掉。)

  (3)计算并验算:

  67×75= 836×25= 125×24=

  订正后回答:

  067×75= 836×025= 0125×24=

  小结:

  小数乘法与整数乘法计算方法有哪些相同的地方,有哪些不同?

  讨论得出:

  相同点:把小数乘法转化成整数乘法后,按整数乘法的计算法则算出积。

  不同点:小数乘法,还要看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

  (4)口算:

  08×4= 4×08= 005×20= 20×005=

  003×9= 9×003= 19×5= 5×19=

  观察上面的算式:谁的积大于被乘数?谁的积小于被乘数?(乘数大于1时,积小于被乘数;乘数大于1时,积大于被乘数。)

  练习:在下题的○中填上>,<或=。

  ①16×12○16; ②14×0○14;

  ③024×5○024; ④37×21○37;

  ⑤0×7○0; ⑥0×28○0。

  上述规律对于⑤,⑥两题为什么不灵了?应该补充什么?(上述规律应该补充“被乘数不为零时”。)

  2小数除法的计算法则。

  (1)计算并验算(P34:6):

  189÷054= 71÷0125= 051÷022=

  计算后订正,提问:

  ①怎样把除数是小数的除法转化为除数是整数的除法?根据什么?(把除数转化为整数。根据商不变的性质,除数扩大了几倍,被除数也扩大几倍。)

  ②小数除法与整数除法有什么相同点和不同点?(小数除法需要把除数转化成整数,按照整数除法的计算法则进行计算,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在后面添上0再继续除。)

  (2)口算:

  42÷06= 15÷5= 32÷08= 2÷4=

  哪些算式的'商大于被除数?哪些算式的商小于被除数?为什么?

  (除数大于1时,商小于被除数;除数小于1时,商大于被除数。)

  练习:在下面的○中填上>,<或=。

  30÷06○30 18÷9○18 0÷02○0

  36÷4○36 27÷03○27 0÷12○0

  上述规律应该补充什么?(上述规律应该补充“被除数不为0时”。)

  (三)综合练习

  1口算:

  3978×1= 36÷36= 287×0=

  1×056= 78÷1= 0÷287=

  “1”与“0”有什么特性?

  2计算并求近似值:P35:2。

  小结:怎样取积、差、和、商的近似值?(先算出积、差、和后,用“四舍五入法”取近似值;求商的近似值时,要除到需要保留的数位的下一位,然后再按“四舍五入法”省略尾数。)

  3作业:P35:1,3。

  课堂教学设计说明

  复习小数乘除法的意义和法则,对整数和小数的乘除法进行了系统的整理和归纳,通过填表的形式,学生明确了它们的联系与区别,把新知识同旧知识联系起来,有利于学生掌握新知识,巩固旧知识。

  通过练习,进一步完善了积与被乘数、商与被除数大小关系的规律,培养学生认真审题,细心计算,加强检验,提高计算的正确率和速度。

  板书设计

  整数乘法:

  4×25=100

  75×52=3900

  小数乘法:

  小数除法:

小数的意义教案10

  教学目标:

  1、知识与技能:①使学生了解小数的产生。②理解小数的意义。③掌握小数的计算单位及单位间的进率。

  2、过程与方法:①培养学生的动手操作能力及观察力。②培养学生的抽象概括能力。

  3、情感态度与价值观:①体验自主探索、合作交流,感受成功的愉悦,树立学习数学的自信心,发展对数学的积极情感。②渗透事物之间普遍联系的观点、实践第一的观点。

  教学重点:理解和抽象小数的意义。

  教学难点:抽象小数的意义。

  教学过程

  一、独立学习

  1、把1米平均分成10份,每份是多少米?3份呢?

  2、分母是10的分数可以写成几位小数?

  3、把1米平均分成1000份,每份长多少?分母是1000的分数可以写成几位小数?

  4、思考什么是分数?什么是小数?

  (学生自学,教师在不干扰学生的前提下巡回指导,发现共性问题,以掌握学生学情)

  二、协作探究

  (一)小组互探(自学中遇到不会的问题,同桌或学习小组内互相交流。把小组也解决不了的问题记好,到学生质疑时提出,让其他学习小组或教师讲解)。

  (二)师生互探

  1、解答各小组自学中遇到不会的问题。

  (1)让学生提出不会的问题并解决。

  (2)教师引导学生解决学生还遗留的问题。

  2、交流小数的意义。

  (1)这是把1米平均分成了多少份?根据以上学习你能知道什么?学生以小组为单位进行讨论。

  [学生由于对一位小数有了一定的理解,在两位小数的教学中,放手让学生小组讨论发言,发挥学生的'积极主动性,使学生知道分母是100的分数可以写成两位小数]

  (2)抽象、概括小数的意义。

  把1米看成一个整体,如把一个整体平均分成10份、100份、1000份这样的一份或几份可以用分母是多少的分数表示?引导学生答出可以用十分之几、百分之几、千分之几这样的分数表示。

  (3)什么叫小数?引导学生讨论。

  (4)师生共同概括:

  分母是10、100、1000的分数可以写成小数,像这样用来表示十分之几、百分之几、千分之几的数叫做小数。(投影出示)。小数是分数的另一种表现形式。

  3、交流小数的计数单位。

  三、达标训练

  1、填空。

  (1)0.1是( )分之一,0.7里有( )个0.1。

  (2)10个0.1是( ),10个0.01是( )。

  (3) 写成小数是( ), 写成小数是( )。

  2、课本做一做。

  3、判断:

  (1)0.40里面有4个0.01。 ( )

  (2)35克=0.35千克 ( )

  4、把小数改写成分数。

  0.9 0.09 0.0359

  您现在正在阅读的四年级下册《小数的意义与读写》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!四年级下册《小数的意义与读写》教学设计课堂小结:谈谈你有什么收获?有什么感受?还有问题吗?(学生总结不完整的地方,教师要适当补充总结)

  四、堂清检测

  (一)出示堂清检测题。

  1、填空题。

  (1)小数点把小数分成两部分,小数点左边的数是小数的( )部分,小数点右边的数是它的( )部分。

  (2)小数点右边第二位是( ),计数单位是( )。

  (3)一个小数,它整数部分的最低位是( )位,小数部分的最高位是( )位。它们之间的进率是( )。

  (4)千分位在小数点( )边第( )位,它的计数单位是( )。小数点右边第一位是( )位,它的计数单位是( )。

  (5)有一个数,百位和百分位上都是5,十位个位和十分位上都是0,这个数写作( ),读作( )。

  2、读出下面各数。

  0.78 5.7 0.307 8.005 6600.506 88.188

  3、写出下面各数。

  零点一二 七点七零七 二十点零零零九

  四千点六五 零点九一八 五十三点三五三

  布置作业:教材P55页 1、2、3题。

  板书设计:

  小数的意义与读写

  十分之一---------------- 0.1

  百分之一----------------0.01

  千分之一----------------0.001

  分母是10、100、1000的分数可以写成小数,像这样用来表示十分之几、百分之几、千分之几的数叫做小数。

小数的意义教案11

  [教学目标]

  1.理解小数乘以整数的意义,掌握它的计算方法。

  2.通过运用迁移的方法学会新知识,培养类推的能力。

  3.培养学生认真观察、善于思考的学习习惯。

  [教学过程]

  本节课分四个环节进行。

  课前谈话:同学们已学习了小数加法和减法的意义及计算方法,这学期要在这个基础上,继续学习小数乘法和除法的意义及计算方法等知识。今天,我们先学习小数乘以整数的意义和计算方法。出示课题:小数乘以整数

  (一)复习旧知,引入新知

  1.指名板演。(用竖式计算)65×5=976×14=订正时,可让学生说说整数乘法的意义及计算方法。

  2.口答。(出示投影片)

  (1)填空。5.6扩大()倍是56。9.76扩大()倍是976。

  (2)去掉下面各数的小数点后,分别扩大多少倍?3.24.780.0370.06

  (3)下面各数分别缩小10倍、100倍、1000倍后各是多少?485853450

  3.填表,并说一说你发现了什么规律。(出示投影片)

  订正时要注意引导学生先从左向右观察:一个因数不变,另一个因数扩大10倍、100倍、1000倍,积也随着扩大10倍、100倍、1000倍。

  再引导学生从右向左观察发现:一个因数不变,另一个因数缩小10倍、100倍、1000倍,积也随着缩小10倍、100倍、1000倍。

  最后归纳出:一个因数不变,另一个因数扩大(或缩小)10倍、100倍、1000倍……,积也随着扩大(或缩小)10倍、100倍、1000倍……。

  教师谈话:刚才我们复习了整数乘法的意义和计算方法,小数点位置的移动引起小数大小的变化规律,及因数的变化引起积的变化规律,这些知识都是为今天学习新知识做准备。下面我们运用这些知识一起研究小数乘以整数的意义和计算方法。

  教学意图:让学生充分回忆旧知识,为学习新知识进行迁移做好准备。教师要注意让全体学生参与,动口、动手、动脑。

  (二)运用迁移,学习新知

  1.理解小数乘以整数的意义。

  出示例1:花布每米6.5元,买5米要用多少元?

  读题后,请学生列出加法算式并板书:

  6.5+6.5+6.5+6.5+6.5

  提问:这个加法算式中的加数有什么特点?这样的加法算式怎样计算比较简便?

  (几个加数相同,都是小数。求n个相同加数的和可以用乘法计算比较简便。)

  提问:你能列出乘法算式吗?想一想它的意义是什么呢?

  (6.5×5,表示5个6.5相加是多少,或6.5的5倍是多少)

  板书:6.5×5

  教师:6.5×5是小数乘以整数,小数乘以整数的`意义是什么呢?

  出示思考题,并组织学生讨论。

  (1)小数乘以整数的意义与整数乘法的意义相同吗?(相同)

  (2)它们有什么不同?(小数乘以整数中的几个相同加数是小数,而整数乘法中的几个相同加数仅限于整数)

  (3)小数乘以整数的意义是什么呢?

  讨论后概括出:小数乘以整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

  练一练,说出下列各题的意义。0.9×463×68.4×15(4个0.9相加的和是多少?6个63相加的和是多少?15个8.4相加的和是多少?)

  2.理解法则。

  教师:我们学习了小数乘以整数的意义,下面继续研究它的计算方法。同学们可联系前面复习的知识,认真思考,积极发言。

  出示思考题,组织学生讨论,并试做。

  (1)怎样把6.5×5转化为整数乘法进行计算?

  (2)把6.5×5转化为整数乘法后,积发生了什么变化?

  (3)要想使积不变,应该怎么办?

  讨论后,教师指名回答,并板书学生的思考过程。

  答:买5米要用32.5元。

  教学意图:让学生初步理解小数乘以整数的意义和计算方法。采用的方法是让学生在旧有知识的基础上运用迁移的方法,通过讨论、尝试,自己探索新知。

  (三)反馈调节,归纳方法

  1.反馈调节。

  (1)完成“做一做”。(指名板演,其他同学在练习本上完成)14个9.76是多少?练习时,要注意行间巡视;订正时,根据学生的问题及时调节。

  (2)计算。0.86×70.375×124(指名板演,其他同学在练习本上完成)订正时,要让学生说一说计算时是怎样想的。

  2.归纳方法。观察并讨论:例题和练习题每题的积的小数位数与被乘数小数位数有什么关系?小数乘以整数的计算方法是什么?(积的小数位数和被乘数小数位数相同)

  总结计算方法:小数乘以整数,先按整数乘法法则算出积,再看被乘数有几位小数,就从积的右边起数出几位,点上小数点。

  总结后,组织看课本,让学生提问题。

  教学意图:在练习的基础上,进一步理解算理,并通过学生观察、讨论,自己发现规律,总结计算方法。

  (四)巩固练习,孕伏发展

  1.说出下面各式的意义。0.8×43.5×719.6×12

  2.下面各题的积有几位小数?看谁说得又对又快。4.3×80.72×63.726×80.54×7

  3.根据282×12=3384,不用计算直接说出各式的积。28.2×12=2.82×12=0.282×12=

  4.列出乘法算式,并计算。(全班动笔)(1)5个2.05是多少?(2)4.95的7倍是多少?

  5.计算。0.45×1081.056×25(可分组进行)

  订正:0.45×108=48.6,1.056×25=26.4,这两题的积的末尾是0,应先数好积的小数位数,点上小数点,再消去“0”。

  6.小明看到远处打闪以后,经过4秒钟听到雷声,已知雷声在空气中每秒传播0.33千米,打闪的地方离小明多远?(从打闪起到看到闪电的时间略去不算)解题前,要向学生说明看见的闪电是光,光在空气中的速度是每秒传播30万千米,远远大于声音在空气中的速度。因此从打闪起到看到闪电的时间可略去不记。订正:0.33×4=1.32(千米)

  7.课堂小结。小结前,可先让学生提出问题,解疑后,再总结。

  8.孕伏发展。

  计算6.5×0.56.5×0.82

  教师:你们知道这两个算式的意义吗?应该怎样计算呢?这是下节课要研究的内容。同学们如有兴趣,课后可以想一想。

  小数乘以整数的意义和计算方法由收集及整理,转载请说明出处

小数的意义教案12

  教学目标

  知识与技能:①使学生了解小数的产生。②理解小数的意义。③掌握小数的计算单位及单位间的进率。

  过程与方法:①培养学生的动手操作能力及观察力。②培养学生的抽象概括能力。

  情感态度与价值观:①体验自主探索、合作交流,感受成功的愉悦,树立学习数学的自信心,发展对数学的积极情感。②渗透事物之间普遍联系的观点、实践第一的观点。

  教学重点:理解小数的意义及每相邻两个单位时间的进率是十。

  教学难点:概括和理解小数的意义。

  教法:启发引导法

  学法:合作交流

  教具学具准备:直尺。

  教学过程

  一、定向导学(5分)

  1、判断下面哪些数是整数?

  4、12、38、3.01、105、0.007、20xx、100.06。

  整数每相邻的两个计数单位之间的进率都是( )。

  板书课题

  2、揭示目标:

  理解小数的意义及每相邻两个单位时间的进率是十。

  二、自主学习(10分)

  自学内容:课本p32-33上半页

  方法:边看书边完成下面的要求。时间:5分钟

  要求:

  1、把1米平均分成10份,每份是( )米,写成小数是( )米;

  把1米平均分成10份,3份是( )米,写成小数是( )米。

  2、把1米平均分成100份,每份是( )米,写成小数是( )米;

  把1米平均分成100份,15份是( )米,写成小数是( )米。

  3、把1米平均分成1000份,每份是( )米,写成小数是( )米;

  把1米平均分成1000份,27是()米,写成小数是( )米。

  (1--6组的4号发言,1号评价)

  三、合作交流:5分钟

  1、什么是小数?

  2、小数的计数单位是多少?

  (7组的'4号发言,1号评价)

  四、质疑探究(5分)

  每相邻两个计数单位之间的进率是多少?

  五、小结检测(15分)

  1、小结:

  谈谈你有什么收获?有什么感受?还有问题吗?(学生总结不完整的地方,教师要适当补充总结)

  2、检测:

  a、填空。

  (1)0.1是( )分之一,0.7里有( )个0.1。

  (2)10个0.1是( ),10个0.01是( )。

  (3) 写成小数是( ), 写成小数是( )。

  b、判断:

  (1)0.40里面有4个0.01。 ( )

  (2)35克=0.35千克( )

  元=0.7 元 ( )

  =0.01 ( )

  米 =0.3米 ( )

  =0.03 ( )

  =0.030 ( )

  c、把小数改写成分数。

  0.9 0.09 0.0359

  3、堂清作业:教材p33页,p36、1.2

  板书设计:

  小数的意义

  十分之一--------- 0.1

  百分之一---------0.01

  千分之一---------0.001

  分母是10、100、1000……的分数可以写成小数,像这样用来表示十分之几、百分之几、千分之几……的数叫做小数。

小数的意义教案13

  一、教学目标

  (一)知识与技能

  在学生初步认识分数和小数的基础上,使学生进一步理解小数的意义,认识小数的计数单位及相邻两个单位间的进率。

  (二)过程与方法

  在操作中使学生体会小数产生的必要性。通过观察、比较,以及自主探究建立小数与分数之间的联系。

  (三)情感态度和价值观

  在学生积极参与数学活动的过程中,渗透数形结合的数学思想,培养学生的抽象概括和迁移能力。

  二、教学重难点

  教学重点:理解小数的意义,理解小数的'计数单位及它们间的进率。

  教学难点:理解小数的计数单位及它们间的进率。

  三、教学准备

  米尺、彩带、磁条。

  四、教学过程

  (一)创设情境,导入新课

  1.同学们在前面的学习过程中已经学习了长度单位,还会用工具测量物体的长度,估一估,课桌面的长度是多少?

  2.你们估计得对不对呢?让我们一起用直尺来验证一下。

  3.谁愿意把你测量的结果告诉大家?

  学生汇报预设:

  学生1:我测量课桌面的长度是120厘米。

  学生2:我测量课桌面的长度是1米2分米。

  教师:课桌的长度如果以米为单位就是1.2米。

  (1)在生活中,人们进行测量和计算时,往往不能正好得到整数的结果。这时常用小数表示。

  (2)认识小数吗?在哪儿见过小数?今天我们一起学习小数的意义。

  【设计意图】联系生活实际提出问题,让学生通过动手操作,在实际测量和记录的过程中发现有时得不到整数结果,从而引发认知冲突,激发学生进一步探究的欲望,感受小数产生的必要性。

小数的意义教案14

  教学目标

  1、情感态度与价值观:增强学生民族自豪感和培养学生学习的积极性。

  2、知识与技能:使学生通过观察、测量了解小数是如何产生的。使学生理解小数的意义,掌握小数的计数单位及相邻两个单位之间的进率。

  3、过程与方法:培养学生观察、抽象、概括及自主合作探究的能力。

  教学重点理解小数的意义

  教学难点掌握小数与分数的关系,深刻理解小数的意义。

  教法自主探索、合作学习

  教学准备多媒体课件、卡片、米尺

  教学课时1课时

  一、旧知复习

  二、生活中的小数

  1、小数的产生

  2、请同学们利用学具盒中的米尺分组测量课桌、书本、黑板的长与宽。

  小结:从日常生活和测量中,往往得不到整数的结果,除了可以用分数的形式表示以外,还可以用另外一种形式小数来表示。分数与小数之间有什么联系呢?带着这个问题我们共同来研究小数的意义。

  三、探究新知

  探索一:一位小数的意义

  把1米平均分成10份,每一份在尺子上是多少?写成分数是多少米?写成小数呢?

  小结:分母是10的分数,可以写成一位小数

  板书:一位小数表示十分之几

  探索二:二位小数的意义

  还记得1米等于多少厘米吗?根据这个知识,结合刚才一位小数的学习,再利用米尺图,以小组为单位对下面的三道小题进行探究学

  小结:分母是100的分数,可以写成两位小数。

  板书:二位小数表示百分之几

  探索三:三位小数的意义

  如果把1米的尺子平均分成1000份,其中的一份或几份的数怎么用分数表示?又怎么用小数表示?你能举例说明你的表示方法吗?

  小结:分母是1000的分数,可以写成三位小数

  板书:三位小数表示千分之几

  总结:

  ①分母是10、100、1000 …的分数,可以用小数表示。这就是小数的意义。

  ②把1米看成一个整体,把一个整体平均分成10份、100份、1000份…这样的一份或几份可以用分母是10、100、1000…的分数来表示,也就可以用小数来表示。

  探索四:小数的计数单位及进率

  小数的.计数单位是十分之一、百分之一、千分之一。用小数写作0.1、0.01、0.001

  那么相邻两个单位间的进率是多少?

  板书:每相邻两个计数单位之间的进率是10

  四、练习达标

  1、把下面各图中涂色的部分用分数和小数表示分数和小数表示出来。(课本P33页“做一做”)

  2、判断题

  (1)0.1、0.01、0.001…是小数的计数单位。

  (2)十分之一、百分之一、千分之一…是小数的计数单位

  (3)仿照整数的写法,写在整数个位的后面,用圆点隔开,用来表示十分之一、百分之一、千分之一…的数,叫做小数。

  3。填空

  0.8里面有个0.1;0.008里面有8个;

  0.32里面有32个;6个是0.6;

  0.5表示把整体;平均分成份,取其中的份。

  0.24表示把整体;平均分成份,取其中的份。

  板书设计

  《小数的意义》

  一位小数表示十分之几

  二位小数表示百分之几

  三位小数表示千分之几

  每相邻两个计数单位之间的进率是10

  课后反思

小数的意义教案15

  教学内容:苏教版三年级下册P102103

  教学目标:

  1、结合具体情境使学生初步体会小数的含义,能认、读、写小数部分是一位的小数,知道小数各部分的名称。

  2、通过观察思考、比较分析、综合概括,经历小数含义的探索过程,让学生主动参与,学会讨论交流,与人合作。

  3、使学生进一步体会数学与生活的密切联系,培养学生自主探索与合作交流的习惯。通过了解小数的产生和发展过程,提高学生学习数学的兴趣,增强爱国情感。

  教具准备:多媒体课件

  教学过程:

  一、情境导入:

  小明搬新家了,家里需要一张新书桌,妈妈让小明自己到商店挑选,但是要记录下所选书桌的长和宽各是多少米。接到任务后,小明邀请好朋友晓红一起来到商店。我们看一看他们所选的书桌是什么样的?(课件演示)

  (评析:开课创设与学生生活和学习内容相适应的情境,促使学生在生动、具体的情境中主动学习数学,让学生感受到生活中处处有数学。)

  二、新知探索:

  1、认识整数部分是0的小数。

  ①从长5分米,宽4分米这两个信息中你们了解到什么?

  ②**的要求是用米作单位,5分米、4分米究竟是多少米呢?运用前面所学到的知识想一想。

  ③5分米是几分之几米?4分米是几分之几米?

  随着学生的回答,师指出:5分米是把1米平均分成10份,5分米是其中的5份,可以用分数5/10米表示。

  (评析:运用学生已有的知识作为新知识的切入点,符合学生的认知规律。同时教师引导学生通过阅读信息,学习分析信息获取知识,又巧妙实现了由生活问题到数学问题的转移。)

  随着学生的回答,师指出:5分米的长度,是把1米平均分成10份,5分米是其中的5份,可以用5/10米表示。

  除了用5/10米表示以外,还可以用0.5米来表示。

  请学生仔细看,0.5米是怎样写的?读作:零点五

  ④4分米是几分之几米?用小数怎样表示呢?(课件演示同上)

  ⑤7分米呢?学生回答后完成想想做做第一题,填完后小组内交流:为什么要这样填?

  ⑥学生汇报:课件演示

  1分米 3分米 7分米 9分米

  1/10米 3/10米 7/10米 9/10米

  0.1米 0.3米 0.7米 0.9米

  仔细观察:你发现分数十分之几可以写成小数什么?零点几就表示什么?

  ⑦动手操作:

  用一张长方形的纸折出2/10,再用小数表示出来。

  再用一张长方形的纸折出0.6。

  小结:十分之几可以写成小数零点几,零点几就表示十分之际。

  板书课题:小数的意义和读写

  小结:小数是在人们实际测量和计算的需要中产生的,在我们实际生活中有着非常广泛的应用。我国古代数学家刘徽在一千七百多年前就开始应用十进分数。(课件介绍古代数学家刘徽)

  (评析:教师适时的在数学教学中进行德育渗透,激发学生的民族自豪感,增强学生的爱国情感。)

  说一说你还在哪些地方见过小数。

  2、认识整数部分不是0的小数。

  小明和晓红选完书桌后又在商店里转了转,看到圆珠笔1元2角,笔记本3元5角,你们能用小数表示出圆珠笔和笔记本各是多少元吗?

  ①学生自主探究,再在小组中合作交流。

  ②学生汇报,并将板书补充完整。

  1元2角还可以写成 1.2元 读作: 一点二

  3元5角还可以写成 3.5元 读作: 三点五

  小结:几元几角分成两部分,几元和几角,先把几角表示成零点几元,再和几元合起来是几点几元。

  ③观察小数:这些小数有什么特点?

  小数中间的点叫做小数点,小数点把小数分成了两部分,小数点的左边是整数部分,右边是小数部分。

  我们以前学过的表示物体个数的1、2、3是自然数,0也是自然数,它们都是整数。今天学的0.5、0.4、1.2和3.5都是小数。

  ④任意写出几个小数,在小组中读一读。

  全班交流时指名说一说整数部分是几?分数部分是几?

  (评析:如何在课堂上开展探索性学习是当前数学教师所探索的问题。本段教学在这方面做了较好的`展示,学生充分运用自主探究动手实践合作交流的学习方式,开展多角度、多层次的探究活动。学生的交流与教师的适时引导交相辉映,将探究活动不断推向深入。)

  三、应用反思:

  1、小明和晓红在商店里还看到很多食品。(课件演示想想做做第二题。)

  你能用元作单位表示出这些食品的价格吗?

  2、他们还看到有的商品是这样表示价格的。(课件演示想想做做第四题。)

  先读出这些商品的价钱,再说一说是几元几角。

  3、小明和晓红在商店里不仅选到了自己喜欢的书桌,而且还学会了一个数学知识,你们学会了吗?

  完成想想做做第五题。

  (评析:练习的设计始终使学生处在生活的情境中解决问题,不但提高了学生继续学习的兴趣,而且使学生切实体会到数学与生活的密切联系。)

  四、课后延伸:

  小数在我们生活、生产中处处可以用到,同学们要学会用数学的眼睛观察生活,用数学知识解决生活中的实际问题。

  [总评:本节课从学生的现实生活出发,极力选取学生身边的事例,使生活素材贯穿于整个教学的始终。注意将数学与学生生活紧密相连,遵循了数学源于生活,实现了数学的应用价值。具体地说有以下几个特点:

  1、创设生活情境,使数学问题生活化。

  本节课教师从课一开始就创设小明、晓红逛商店这一生活情境,而且这一情境始终贯穿整个教学过程中。使学生感到所学的内容不再是简单枯燥的数学,而是非常有趣、富有亲近感,感到生活中处处有数学,数学就在身边,他们被浓厚的生活气息所带动,兴致勃勃投入新课的学习中。

  2、自主探究、合作交流,让学生经历知识形成的过程。

  数学知识、思想、方法必须由学生在实践活动中理解、感悟、发展,而不是单纯依*教师的讲解去获得。根据这一理念,教师在教学中从学生的认知规律和知识结构的实际出发,让他们通过有目的的观察、操作、交流、讨论,从直观到抽象,主动构建自己的认知结构。

  3、有机渗透思想品德教育,培养学生的爱国情感。

  培养学生的情感态度和价值观是每一位教师教学的重要目标之一,本节课在充分发掘教学内容,发展学生能力的基础上,介绍了我国古代数学家刘徽,使学生了解我国悠久灿烂的文化,增强学生的爱国情感,树立建设祖国的信念。

  总之,本课教学注重体现以学生发展为本的理念,重视学生的自主探究、创新精神和实践能力的培养。通过创设情境,把数学知识与生活实际结合起来,让学生在操作、交流、探究中去思考、体验和感悟,在实践中学习数学,在学习中体会到学习数学的乐趣,让学生在获取知识形成技能的同时,情感、态度、价值观都得到发展。