当前位置:范文网>教学资料>教案>分数与除法教案

分数与除法教案

时间:2022-08-30 17:18:28 教案 我要投稿
  • 相关推荐

分数与除法教案

  作为一名老师,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。那么你有了解过教案吗?下面是小编收集整理的分数与除法教案,希望对大家有所帮助。

分数与除法教案

分数与除法教案1

  教学目标

  1.使学生理解两个整数相除的商可以用分数来表示.

  2.明确分数与除法的关系,加深学生对分数意义的理解.

  教学重点

  理解、归纳分数与除法的关系.

  教学难点

  用除法的意义理解分数的意义.

  教学步骤

  一、铺垫孕伏.

  1.读题说得数.

  3。2+1。68 0。8×0。5 14-7。4 0。3÷1。5 4。8×0。02

  7。8+0。9 1。53-0。7 0。35÷15 0。4×0。8 0。8-0。37

  2.口述 表示的意义.

  3.列式计算.

  (1)把40棵树苗平均分给5个小组栽,每组栽多少棵?

  (2)把8米长的钢管平均分成2段,每段长多少米?

  二、探究新知.

  1.新课导入.

  出示例2:把1米长的钢管平均截成3段,每段长多少米?

  板书: 1÷3

  教师提问:1÷3的结果能用准确的数表示出来吗?怎么办?学习了分数与除法的关系就明白了.(板书、分数与除法)

  2.教学例2.

  (1)从分数的意义上理解1÷3,即把1米长的钢管着成单位“1”,把单位“1”平均分成3份,表示这样一份的数,可用分数 来表示,1米的 就是 米.(板书 米)

  (2)学生完整叙述自己想的过程.

  (3)反馈练习.

  ①把1米长的钢管,平均分成8段,每段长多少?

  ②把1块饼平均分给5个同学,每个同学得到多少块?

  3.教学例3.

  出示例3:把3块饼平均分给4个孩子,每个孩子分得多少块?

  (1)读题列式: 3÷4

  (2)动手操作:怎样把3块饼平均分给4个同学呢?

  (3)学生交流.

  甲生:先把每个圆剪成4个 块,然后把12个 平均分成4份,再把3个 拼在一起,每份是 块.

  乙生:把3个圆放在一起,平均分成4份后,剪下其中的一份,再把1份中的3个 拼在一起,得到每个分 块.(在3÷4后板书 块)

  (4)看图根据乙生分饼的过程说出 表示的意义.

  ①乙生把3块饼平均分成了4份,这样的一份是3块饼的 ,即

  ②甲生把1块饼平均分成了4份,表示这样的3份的数是 .

  (5)都是 ,意义有何不同?(结合算式说出 的.两种意义)

  明确: 表示把3平均分成4份,取其中的1份;

  还表示把单位“1”平均分成4份,取这样的3份.

  (6)反馈练习:说说下面分数的两种意义

  4.归纳分数与除法的关系.

  (1)教师提问:怎样用分数来表示整数除法的商呢?

  学生归纳:可以用分数表示整数除法的商,用除数做分母,用被除数作分子.也就是说分数既表示分数的意义,又表示整数除法的商.

  (板书: )

  教师明确:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数.

  (2)讨论:用字母表示分数与除法的关系有什么要求?

  (3)反馈练习.

  三、全课小结.

  通过今天的学习,你明白了什么?

  四、随堂练习.

  1.填空.

  分数可以用来表示除法算式的( ).其中分数的分子相当于( ),分母相当于( ).

  2.用分数表示下列各式的商.

  4÷5 11÷13 27÷35

  9÷9 13÷16 33÷29

  3.列式计算.

  (1)把5米长的绳子,平均分成12段,每段长多少米?

  (2)把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?

  (用分数表示)

  (3)小明用15分钟走了1千米路,平均每分走几分之几千米?

  五、布置作业.

  用分数表示下面各式的商.

  3÷4 7÷12 16÷49 25÷24 9÷9

分数与除法教案2

  教学目标:

  1.使学生结合具体情境,探索并理解分数与除法的关系,会用分数表示两个整数相除的商,会用分数表示有关单位换算的结果;能列式解决求一个数是另一个数的几分之几的简单实际问题。

  2.使学生在探索分数与除法关系的过程中,进一步发展数感,培养观察、比较、分析、推理等思维能力,体验数学学习的乐趣。

  教学重点:理解分数与除法的关系。

  教学难点:理解分数表示整数除法的商。

  课前准备:课件。

  教学过程:

  一、激活旧知,引发思考

  1.把8块饼平均分给4个小朋友,每人分得多少块?如果有4块饼呢?

  学生口答列式,教师板书。

  提问:这样的问题为什么用除法算?

  指出:把一些物体平均分,求每份是多少,用除法计算。

  2.引入新课

  二、主动思考,认识新知

  1.教学例2

  (1)把刚才呈现的题目改为:把1块饼平均分给4个小朋友,每人分得多少块?

  怎样列式?

  把1块饼平均分给4个小朋友,平均每人能分到1块吗?你是怎样想的?

  每人分得的不满1块,结果可以用分数表示。

  那么,可以用怎样的分数表示1÷4的商呢?请大家拿出1张圆形纸片,把它们看作1块饼,按照题目分一分,看结果是多少?

  (2)学生操作,了解学生是怎样分和怎样想的。组织交流,你是怎么分的.?

  (3)小结:把1块饼平均分给4个小朋友,每人分得14块。完成板书。

  2.教学例3:

  把3块饼平均分给4个小朋友,每人能分得多少块?

  可以怎样列式?3÷4得数是多少?

  大家拿出3张圆形纸片,把它们看作3块饼,按照题目分一分,看结果是多少?

  3.独立完成

  把3块饼平均分给5个小朋友,每人能分得多少块?

  3除以5,商是多少?怎样用分数表示?小组交流。

  4.总结归纳

  请大家观察上面两个等式,你发现分数与除法有什么关系?

  被除数÷除数=被除数/除数

  如果用a表示被除数,用b表示除数,这个关系式可以怎样写?a÷b=a/b

  讨论:b可以是0吗?(在除法中,0不能作除数;分数中的分母,相当于除法中的除数,所以分母不能是0。)

  5.教学试一试。学生尝试填空。你是怎样想的?

  把7分米改写成用米做单位的数,可以列怎样的除法算式?7÷10的商用分数怎样表示?23分改写成用时作单位的数,可以列怎样的除法算式?23÷60的商用分数怎样表示?(指出:两个数相除,得不到整数商时,可以用分数表示。)

  6.做练一练第1、3题

  学生独立填写,要求说说填写时是怎样想的。

  7.做练一练的第2题

  学生填写后,引导比较:上下两行题目有什么不同?

  三、练习巩固,加深认识

  1,做练习八第6题

  让学生看图填空。

  交流:结果各是多少米?怎样从图上看出结果?

  追问:如果列式计算,应该怎样列式,得数是多少

  2.做练习八第7题。

  让学生独立完成,交流结果。

  3.做练习八第8题。

  让学生独立解答,交流方法板书。

  四、反思总结

  今天这节课,学习了什么内容?通过学习,有什么收获?还有哪些疑问?

分数与除法教案3

  教学目标:

  1、能正确进行分数乘除的混合运算。

  2、能用分数乘除的混合运算解决生活中的实际问题。

  3、初步形成独立思考和探索的意识。

  4、感受数学与生活的密切联系,激发学生学习数学的兴趣。

  教学重点:

  用分数乘除的混合运算解决实际问题。

  教学难点:

  分析题中的数量关系,正确地列出算式。

  教学准备:

  多媒体课件、实物投影

  教学过程:

  一、 课前三分钟口算练习。

  师:老师要先考考大家的口算能力

  出示口算卡片,指生答

  (挑选一两道题让学生说说计算方法)

  二、情境导入:

  师:同学们,规范认真的书写是每一个同学应具备的基本素质,不光语文上要规范书写,数学亦如此,经过一段时间的努力,同学们的书写水平都有了很大的进步,我们班也涌现出了数学书写之星,想知道他们是谁吗?想看看他们的作品吗?

  师:好,那大家必须接受考验,闯过三关,找到三把金钥匙,有信心吗?

  师:上节课我们学习了“分数乘除的混合运算”,这节课我们要运用所学知识解决生活中的数学问题。上一节分数乘除混合运算的练习课。

  三、检查复习知识点与指导练习。

  1、我会说

  师:不计算,只说运算过程,你会说吗?

  指生说

  2、计算

  师:知道了分数乘除混合运算的'运算顺序和计算方法,你能准确无误的计算这两道题吗?试试看

  指生到台前做。

  学生讲解

  师:能不能告诉大家,在计算时应该注意什么问题?

  师:同学们说得真不错,这就是我们在计算时容易出现的错误,在做题的时候,大家要注意这些问题,正确进行分数乘除混合运算的计算。能做到吗?

  指生到黑板上做

  订正答案,及时反馈。出示错题,让学生找错误。并说说计算应注意什么问题。

  3、解方程

  师:看来,刚才这道题太简单了,没有难住大家。下面老师就要增加一点难度了,愿意接受挑战吗?(出示课件)

  师:你能说一说解方程的步骤吗?

  指生说

  学生在练习本上完成本题,订正反馈

  师:恭喜大家,拿到了第一把金钥匙。有信心拿到第二把吗?让我们继续闯关吧。

  4、解决问题

  学生独立完成,分析题意,订正答案

  师:在大家的共同努力下,我们拿到了第二把金钥匙。第三把钥匙得靠自己了。有信心超越自我吗?

  四、当堂测试:

  师:请同学们独立完成当堂测试,检验一下自己的学习成果吧。

  订正答案,及时反馈

  师:恭喜大家,拿到了最后一把金钥匙。

  师:现在三把钥匙都找到了,让我们一起来看看是谁获得了数学书写之星的称号,共同来欣赏他们的作品吧。(课件出示)

  师:看了大家的书写,你想说点什么?

  五、小结

  师:通过本节课的学习,你有什么收获?

  学生交流

  师:同学们,这节课你学得快乐吗?希望同学们每一节课都能快乐学习,健康成长。

分数与除法教案4

  教学内容:

  人教版五年级数学下册第四单元P49l。

  教学目标:

  1.使学生理解两个整数相除的商可以用分数来表示,会用分数表示两个数相除的商。

  2.使学生正确理解和掌握分数与除法的关系

  3.培养学生的应用意识,渗透辩证思想,激发学生学习兴趣。

  教学重难点:

  1.理解和掌握分数与除法的关系。

  2.用除法的意义理解分数的意义。

  教学具准备:

  课本主题挂图,圆形纸片(4—5张)。

  教学过程:

  一、创设问题,复习导入

  1.填空。

  6表示( )。

  7(2)的分数单位是( ),它有()个这样的分数单位。 10(1)

  2.问题引入

  师:5除以9,商是多少?(板书:5÷9 =)如果商不用小数表示,还有其他方法吗?有了分数,就可以解决这个问题。这节课我们就来学习怎样用分数表示除法的商,认识“分数与除法的关系”。 板书课题:分数与除法

  二、探索研究,学习新知

  (一)教学例1

  1.出示主题挂图,读题后,指导学生根据整数除法的意义列出算式。

  2.讨论:1 除以3结果是多少?你是怎样想的?

  3.汇报讨论结果:

  生:我解答这道题的列式是1÷3,可以把一个蛋糕看作单位“1”,把它平均分成3份,表示这样的一份的数,可以用分数1111来表示,1个蛋糕的就是个,所以,1÷3 =。 3333

  教师根据学生回答板书:

  1÷3 =

  (二)教学例3

  1.出示主题挂图,读题后,引导学生列出算式:3÷4。

  2.指导学生动手操作:拿出三张同样大小的'圆形纸片,把它看作3块饼,用剪刀把它们分成同样大小的4份。

  引导学生边分边思考:我们把谁看作单位“1”?把它平均分成4份,每份是多少?你想怎样分? 教师巡视,参与指导。

  3.汇报演示分得的过程及结果,教师根据学生汇报总结不同的分法。

  方法一:可以一个一个地分,先把每块月饼平均分成4份,每块可分得4个

  个11(个)答:每人分得个。 331,3块月饼共分得124113,平均分给4个人,每人可分得3个,合在一起是块。

  3块月饼,4方法二:可以把3块月饼叠在一起,再平均分成4份,拿出其中的1份,拼在一起就得到

  所以每人分得3块。(如图)

  板书:3÷4 =

  4.理解。 师: 33(块)答:每人分得块。 443块月饼表示什么意思?

  指导学生说清理解:表示把3个月饼平均分成4份,表示这样1份的数;还可以表示把1个月饼平均分成4份,表示这样3份的数。 师:去掉单位名称,你能说一说3表示的意思吗?

  可以放手让学生说一说,归结明白:可以表示把单位“1”平均分成4份,表示这样3份的数;还可以表示把3平均分成4份,表示这样1份的数。

分数与除法教案5

  本课题教时数:1本教时为第1教时备课日期10月22日

  教学目标

  1、使学生进一步认识分数除法的意义、比的意义和基本性质及其应用,能比较熟练地求比值和把一个比化成简单的整数比。

  2、使学生进一步掌握分数除法的计算法则,能正确地计算分数除法和分数除法与加、减法或乘法的混合运算。

  教学重难点

  能比较熟练地求比值和把一个比化成简单的整数比。

  能正确地计算分数除法和分数除法与加、减法或乘法的混合运算。

  教学准备

  教学过程设计

  教学内容

  师生活动

  备注

  一、 揭示课题

  二、整理知识

  三、组织练习

  四、课堂小结

  本单元我们学习了什么?你学习了哪些内容?

  这节课我们先复习分数除法的有关概念和计算。

  通过复习,大家要进一步掌握分数除法的意义、比的意义和基本性质,以及这些概念的应用;进一步掌握分数除法的计算法则。要能比较熟练地求比值和正确地进行比的化简,能正确地计算分数除法,以及分数除法与分数加、减法或乘法的混合运算。

  1、复习分数除法的`意义

  问:分数除法表示的意义是什么?

  你能根据分数除法表示的意义,把2/155=2/3改写成两道除法算式吗?

  指出:分数除法是已知两个数的积和其中一个因数,求另一个因数的运算。

  2、复习分数除法计算法则

  提问:我们在分数除法里,学过哪几种情况的计算?

  分数除法计算的方法是怎样的?

  3、笔算练习

  做复习第2题

  指出:在分数除法里,无论哪一种情况的计算,都要转化成乘法计算。

  4、复习比的意义

  问:什么叫比?比的各部分名称是什么?请你举个例子来说明。

  比与除法、分数有什么联系?请你根据4:5来说明。

  5、做复习第3题

  6、复习比的基本性质

  提问:化简比和求比值各是依据什么来做的?

  1、做复习第5题

  2、做复习第6题

  3、做复习第7题

  指出:有关分数除法的运算,只要按过去的运算顺序,计算时遇到除法计算,只要转化成乘法来计算。

  4、做复习第8题

  指出:根据求一个数和分数相乘可以表示求这个数的几分之几是多少,可以顺着题意列出方程来解答这样的文字题,也可以根据分数除法的意义列式解答。

  这节课复习了什么内容?你进一步明确了哪些知识?

  课后感受

  教学效果较好,同学们所做的题目的正确率较高。

分数与除法教案6

  设计说明

  苏霍姆林斯基曾说过:“引导学生借助已有的经验去获取知识,这是最高的教学技巧之所在。”本节课的教学通过让学生动手操作、自主探究、合作交流等方式,使学生经历“探究——发现——验证——修改”的过程。通过一系列的活动,使学生完成了知识的自我构建,同时也加深了对分数除以整数的意义的理解,符合学生的发展需要。

  另外,本节课的教学设计还遵循学生的认知规律和年龄特点,对计算进行探究式教学。让学生以自主探究和合作交流的方式,在分析问题和解决问题的过程中体验成功的喜悦,不仅使学生获得了知识,发展了智力,还激发了学生学习数学的兴趣

  课前准备

  教师准备 PPT课件、长方形包装纸

  学生准备 长方形纸

  教学过程

  ⊙创设情境,提出问题

  1.问题导入。

  师:同学们,我们学过整数除以整数(0除外),也知道了整数除法的意义。今天我们将学习分数除法。那么分数除法的意义是什么呢?它和整数除法的意义是否相同呢?下面就让我们带着疑问一起来探究一下几个小朋友分饼的问题。

  请你们列出算式并计算。

  (1)每人吃张饼,4个人共吃多少张饼?

  (2)把2张饼平均分给4个人,每人分得多少张饼?

  (3)有2张饼,每人分得张饼,可以分给几个人?

  (引导学生观察上面的三道题,并说一说它们都是已知什么,求什么)

  2.揭示分数除法的意义。

  讨论:(3)题中涉及了分数除法,想一想,分数除法的意义和整数除法的意义相同吗?

  总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

  设计意图:通过对一组题的探究和对比,使学生发现分数除法的意义与整数除法的'意义相同,这样新旧知识的迁移过渡,可以使学生对分数除法的意义理解起来更加容易。

  ⊙合作交流,探究新知

  1.引导参与,探究新知。

  (1)出示教材55页例题。

  师:(出示一张长方形的包装纸)老师想用这张漂亮的包装纸把送给妈妈的礼物包装起来,可是这张纸太大了,把它的平均分成2份就够了,每份是这张纸的几分之几呢?

  (2)动手操作,分一分,涂一涂。

  师:请大家拿出一张长方形纸,涂色表示出这张纸的。

  (学生动手操作,教师巡视指导)

  师:把一张长方形纸的平均分成2份,想一想,是把哪一部分平均分成了2份?其中的一份是多少呢?请大家用自己喜欢的颜色表示出来。

  (学生活动,教师指导)

  (3)观察发现。

  师:通过画图,你发现了什么?能用一个算式表示出涂色的过程吗?

  预设

  (教师利用课件配合学生汇报)

  生1:把平均分成2份,每份是2个小格,占这张纸的。

  生2:里面有4个,平均分成2份,每份就是2个,是,即÷2=。

  设计意图:通过涂一涂的活动,在教师的引导下,让学生列出除法算式,使学生进一步理解、感受分数除法的意义。

  2.初探算法。

  师:如果不看图,你会计算÷2吗?你能提出大胆的猜想吗?

  预设

  生:分母不变,被除数的分子除以整数得到的商作商的分子。

  提出质疑,验证猜想,理解新知。

  (1)尝试验证,发现问题。

  师:科学的验证不是仅通过计算一两道题就能得出结论的,你们能不能自己设计一道分数除以整数(0除外)的计算题来验证刚才的猜想是否正确呢?

  (学生汇报验证的结果)

  师:为什么有些题目能很顺利地算出来,而有些题目却不能很快地算出准确的答案呢?(分数的分子不能被除数整除)

分数与除法教案7

  教学目标

  1、通过观察、探究,理解分数与除法的关系,并会用分数表示两个数相除的商。

  2、经历分数与除法的关系的探究过程,明确可以用分数表示两个数相除的商

  3、通过观察、探究,渗透辩证思想,激发学生学习兴趣。

  教学重难点

  教学重点:

  掌握分数与除法的关系,会用分数表示两个数相除的商。

  教学工具

  多媒体课件,圆形纸片,剪刀

  教学过程

  一、创设情境,导入新课,

  师:同学们过生日都要吃生日蛋糕,喜欢吃吗?(生:喜欢)

  1.师:今天老师就带来了8个小蛋糕把8个小蛋糕平均分给4个人吃,每人分得多少个?

  怎么列式?生:8÷4=2(个)

  2.师:把8个小蛋糕变成1个大蛋糕把1个大蛋糕平均分给4个人吃,每人分得多少个?

  怎么列式?生:1÷4=

  二、动手操作,探索新知

  1、探索一个物体平均分,体会分数与除法的关系。

  (1)师:每人分得多少个?请同学们利用这张白色的圆形纸片,折一折,分一分,看看到底是多少个?生动手折纸,思考

  生:把1个蛋糕看作单位“1”,把它平均分给4个人,也就是平均分成4份,每人分得其中的一份,也就是这1个蛋糕的1/4,就是1/4个蛋糕

  (2)师:把1个蛋糕平均分给3个人,每人分得多少多少个?怎么列式?

  生独立思考并回答。

  全班交流,明确:求每人分得多少个,要把1个蛋糕平均分成3份,用除法计算;而把“1”平均分成3份,表示这样一份的数,可以用分数()来表示。所以1÷3=()(个)

  2、探索多个物体平均分,体会分数与除法的'关系。

  师:把3个蛋糕平均分给4个人,每人分得多少个?

  师:怎样分公平?每人分得多少个?下面,利用你手中的学具3张圆形纸片,小组合作,分一分,剪一剪。

  (1)充分交流、展示学生的想法与做法(可能出现以下几种情况)。

  方法一:一张一张分,把每个蛋糕分别平均分成4份,共12份,每人分到3份,3个(1/4)张拼在一起得到(3/4)个。

  方法二:三个蛋糕摞在一起,平均分成4份,每人分到1份,1份中有3个(1/4)个,拼在一起得到(3/4)个。

  (2)演示:(突出方法二中3个的1/4就是1个的3/4,深化3/4的意义)无论哪一种方法我们都得到:3个蛋糕平均分给4个人,每人分到的就是3/4个蛋糕。即:3÷4=()(个)(板书)

  (3)在这里,3/4就有两层含义:既表示1个的蛋糕的3/4,又表示3个蛋糕的1/4

  (4)师:同学们真了不起,老师还想考考你们:如果把5个蛋糕平均分给7个人,每人分得多少个呢?你能想象一下分的过程吗?好好想一想,并和同学交流一下。

  学生汇报,明确:5个蛋糕的1/7就是1个蛋糕的5/7,即:5÷7=5/7(个)(板书)(5)师:刚才我们是分的蛋糕,现在我们来分分绳子。把3根绳子平均分成5份,每份是多少根?怎么列式?学生思考后回答:3÷5=3/5(根)(课件演示)

  3、总结概括分数与除法之间的关系。

  1÷4=(个)3÷4=(个)

  5÷7=(个)3÷5=(个)

  师:观察黑板上的这些算式,你发现了什么?

  三、观察算式,概括分数与除法的关系。

  (1)请同学们观察这两组算式,你发现分数与除法有什么关系?请观察思考一下,并把你的发现和同学交流一下。

  (2)生汇报:我发现除法算式中的被除数相当于分数的分子,除法算式中的除数相当于分数的分母,除法算式的除号相当于分数的分数线。师补充:除法算式的商相当于分数的分数值。

  师强调:相当于

  (3)师:请每个同学看着这些算式说一说分数与除法的关系。

  (师板书):被除数÷除数=被除数/除数

  提问:我们能不能反过来说,分数的分子相当于什么?谁来说一说?

  生:分数的分子相当于除法算式中的被除数,分数的分母相当于除数,分数线相当于除号。

  (4)师:如果用a表示被除数,b表示除数,二者的关系可以用字母表示成:a÷b=a/b

  讨论:用字母表示分数与除法的关系,b是否可以是任何数?为什么?补充板书(b≠0)师板书:a÷b=a/b(b≠0)提问:为什么b≠0?(因为除数不能为0,所以b不能为0。)

  师:分数与除法有着如此紧密的联系,那么它们之间有没有区别呢?(学生说不出可以引导)

  小组议一议再全班交流,明确:分数是一种数,也可以表示两数相除;而除法是一种运算。

  三、练习巩固应用

  1、你能很快说出这些算式的商吗?3÷8=5÷9=7÷13=4÷7=40÷56=12÷61=

  2、把1千克葡萄干平均装在2个袋子里,每袋重多少千克?怎么列式?

  把1千克葡萄干平均装在3个袋子里,每袋重多少千克?怎么列式?

  把2千克葡萄干平均装在3个袋子里,每袋重多少千克?怎么列式?

  四、全课小结今天这堂课你有什么收获?还有什么问题吗?

分数与除法教案8

  教学目标:

  1、通过本课的复习使学生能很好的掌握本单元所学的知识,能很好的掌握分数乘除法的应用题。

  2、全盘对本单元的知识有个全面的了解,解决在学习时所遇到的问题。

  重难点:

  1、通过本课的复习使学生能很好的掌握本单元所学的知识,能很好的掌握分数乘除法的应用题。

  2、全盘对本单元的知识有个全面的了解,解决在学习时所遇到的问题。

  教学过程:

  一、复习提问

  1、我们如何来解答分数分数应用题的?

  2、解答分数应用题的解题的步骤是怎么样的?

  请学生进行回答。

  二、练习

  1、讲解分析对比题

  1)、甲数是30,是乙数的2/3,乙数是多少?

  分析:

  哪个是单位1的量?

  数量关系式是怎么样的?

  乙数×2/3=甲数

  判断:单位1的量有没有直接告诉我?

  我们选择用什么方法

  请学生独立的做,做好以后再请学生进行板演。

  2)、甲数是30,乙数是甲数的2/3,乙数是多少?

  分析:

  哪个是单位1的量?

  数量关系式是怎么样的?

  甲数×2/3=乙数

  判断:单位1的量有没有直接告诉我们?

  我们选择用什么方法

  请学生独立的做,做好以后再请学生进行板演。

  比较:这两题有什么相同和不同的地方?

  2、对比练习

  1)轿车每小时行120千米,卡车的速度是轿车的3/4,卡车每小时行多少千米?

  2)轿车每小时比卡车多行30千米,如果轿车的速度比卡车快1/3,那么卡车每小时行多少千米?

  3)卡车每小时行90千米,是轿车速度的3/4,轿车每小时行多少千米?

  请学生独立的做,做好以后再请学生进行板演,并说说是怎样想的。

  3、探索和实践

  1、做66页第8题

  引导学生联系分数的意义或通过画图进一步体会分数除法计算方法的合理性。

  2、做66页第9题

  题中提供的条件较多,涉及了倍比和单价、数量和总价,所以有一定的挑战性。

  请学生先进行尝试做,做好了以后请学生再和老师一起进行研究分析。

  4、根据算式补充条件

  学校买来5/8吨水泥,(),买来黄沙多少吨?

  1、5/8+3/8补充条件:()

  2、5/8-3/8补充条件:()

  3、5/8×3/8补充条件:()

  4、5/8÷3/8补充条件:()

  请学生独立的做,做好了以后请学生分析一下说说你是怎么想的?

  5、让学生进行评价和反思。

  反思本单元学习过程中的表现,说说自己学习中的体会及存在的问题,说说自己学会了什么,还有什么疑问。

  三、作业

  课前思考:

  潘老师设计的整理与复习练习,思路清晰,条理清楚,并且补充了相应的练习,让学生在对比中进一步认识分数两种类型应用题的联系与区别,设计的根据算式补条件与问题练习,更促使学生灵活掌握两种应用题的本质特点。

  是否还可增加练习的数量与密度?

  补充练习:

  一、先说出数量关系式,再判断解答方法。(安排在对比练习后)

  1、一条公路全长20xx千米,已经修好了2/5,已经修好了多少千米?

  2、六1班有20个女生,正好是男生人数的4/5,六1班男生有多少人?

  3、李明家8月份用电30千瓦时,9月份比8月份少用了1/10,9月份比8月份少用电多少千瓦时?

  4、果园里有200棵桃树,梨树的棵树是桃树的3/4,果园里有多少棵桃树?桃树的棵树是橘树的5/3,果园里有多少棵橘树?

  二、请你自己编一题生活中分数问题,先说给同学听题目,再将你的解答方法与同桌交流。(安排在评价与反思前)

  课后反思:

  通过对比题的讲解,学生对解决有关分数的实际问题有了一定的进步。对于第9题,由于题中的条件较多,而且还涉及到单价、数量和总价的数量关系,所以在讲解时先让学生根据关键句分别说出数量关系,并且可以求出哪一个量,再根据单价、数量和总价的关系,求各买了什么水果,使学生加深对用分数表示数量关系的理解。

  “评价与反思”引导学生对本单元的学习情况进行实事求是的评价,激励学生增强学好数学的信心。

  课前思考:

  综合两位老师的教学设计,我想这一课时的教学内容比较丰富了。单元练习课既要帮助学习困难生复习整理本单元的数学知识,又要使优秀学生在原有基础上有所提高。考虑到我所任教的两个班中都有几位学生的数学学得较出色,所以想再增加两道有挑战性的题目,让他们动动脑。

  补充如下题目:

  1、一辆电动玩具坦克,因为电池快耗尽,所以每分钟行的距离都占前1分钟所行距离的4/5。开动后,这辆坦克第5分钟所行的距离是8米,求它开动后第1分钟所行的距离。

  2、南京举办一场明星演唱会,原定每张票价450元,组委会考虑到市场因素,决定降价。结果观众比计划增加了两倍,收入增加了2/3。每张门票降价多少元?

  课后反思:

  1、今天的练习课,教材上的内容比较少,我和潘老师针对学生掌握实际情况,补充了一些练习。确实,平时的练习课,要经常补充一些拓展性练习,发展学生思维。

  2、在昨天的练习中,学生已初步感知用列方程解的方法与列除法算式直接解答之间的联系。在今天的练习中,我要求学生用这两种解答方法进行巩固,并引导学生比较这两种解答方法的'优劣,让学生体会到用方程解比较容易理解,用分数除法直接解答书写比较简便。允许学生在熟练掌握数量关系的基础上可直接用除法解答,但和学生约法三章:如果部分学生还没有熟练掌握分数应用题,解答方法弄错的话,那么订正时要求先用方程解订正,再用分数除法订正。

  3、书上第9题确实有一定难度,提供的信息多了,解答的步骤多了。幸亏刚才在上面让学生掌握巩固分数除法解答的方法,如果用方程解,学生的困难就更大了。

  4、孙老师补充的拓展题,我将利用自习课让学生尝试练习,这题容分数应用题与倒推思想为1题,综合性、趣味性很强。

  课后反思:

  今天的复习课主要是进行分数乘、除法实际问题的综合练习,重点是复习解题思路,尤其是数量关系式的分析。课上,我先组织学生练习教材第66页的第4题,即三道有关工作总量、工作效率与工作时间的实际问题。由于题中出现的两个信息都是分数,这给学生分析题目造成了一定的困扰,而且本题的数量关系也较抽象,学生理解起来也有些难度。我在教学中也遇到了高教导谈到的问题,在课中,我想到学生以前学过的行程问题和购物问题中的数量关系,请学生联系前面学习的内容来理解,并且指出理解其中一个,如:工作效率×工作时间=工作总量,然后遇到具体问题,再具体分析求哪一个量,可以怎样计算。

  从今天课堂上的学习看,对于数量关系的分析仍是不少学生的最大问题。由于不理解题中的关键句就造成不会分析数量关系,最后就导致错误列式。反思前面的教学,可能在这方面还存在一些问题,所以现在问题就反映出来了。我想在学习第二单元时,还要在回家作业中布置有关分数乘、除法的练习,这样不至于让学生因长时间不接触这一部分内容而造成遗忘。

分数与除法教案9

  教学内容:

  苏教版义务教育教科书《数学》六年级上册第49~50页例5、试一试和练一练,第51页练习七第1~4题。

  教学目标:

  使学生联系对“求一个数的几分之几是多少”的已有认识,学会列方程解答“已知一个数的几分之几是多少求这个

  数”的简单实际问题,进一步体会分数乘、除法的内在联系,加深对分数表示的数量关系的理解。

  教学重点:

  列方程解答“已知一个数的几分之几是多少,求这个数”的简单实际问题。

  教学难点:

  理解列方程解决简单分数实际问题的思路。

  教学过程:

  一、导入

  1、出示例5中两瓶果汁图,估计一下,大、小两瓶果汁之间有什么关系?

  出示:小瓶的果汁是大瓶的。

  这句话表示什么?你能说出等量关系式吗?

  如果大瓶里的果汁是900毫升,怎么求小瓶果汁里的果汁?自己算算看。

  如果知道小瓶里的'果汁,怎么求大瓶中的果汁呢?

  2、揭示课题:简单的分数除法应用题

  二、教学例5

  1、出示例5,学生读题。

  提问:你想怎么解决这个问题?

  2、讨论交流:你是怎么想、怎么算的?

  (1)用除法计算。

  引导讨论:为什么可以用除法计算?依据是什么?

  (2)用方程解答。

  讨论:用方程解答是怎么想的,依据是什么?

  让学生在教材中完成解方程的过程,并指名板演。

  3、引导检验:900是不是原方程的解呢,怎么检验?

  交流检验的方法。

  4、教学“试一试”

  (1)出示题目,让学生读题理解题目意思。

  (2)讨论:这里中的两个分数分别表示什么意思?

  这题中的数量关系式是什么?

  (3)这题可以怎么解答,自己独立完成,并指名板演。

  (4)交流:你是怎么解决这个问题的?

  4、小结。

  三、练习

  1、做“练一练”。

  各自独立解答后,进行交流汇报。提倡学生用两种方法进行解答。

  2、做练习十二第1题。

  (1)读题,画出题目中的关键句。

  (2)学生说题意

  (3)引导学生说出并在书上写出数量关系式。

  (4)独立解答,并指名板演。

  (5)集体评议并校正。

  3、做练一练第2题。

  启发:你是怎样分析数量关系的?为什么要列方程解答?

  3、小结解题策略。

  四、作业:练习十二第1、3、4题。

  板书设计:(略)

分数与除法教案10

  教学内容:

  分数除法的意义和分数除以整数(教科书第25页——26页的例1,练习七第1——7题)。

  教学目标:

  使用学生理解分数除法的意义,掌握分数除以整数的计算方则,并正确计算分数除以整数。

  教学重点:

  分数除以整数的计算方法 。

  教学难点:

  除转化为乘和道理。

  教学过程:

  一、 复习

  1.口答下面各题的倒数。

  2 、1、0.4

  2.根据一个乘法算式写出两个除法算式。

  3×15=45 125×8=1000

  二、 新授

  揭示课题:分数除法

  1.分数除法的意义和计算法则

  (1) 出示25页的月饼图。

  (2) 引导学生回答问题

  1)每人吃半块月饼。4个人一共吃多少块?怎样列式?得多少?

  板书:×4=2 (块)

  2)再看把两块月饼平均分给4个人,每人分得几块?怎样列式?得多少?

  板书:2÷4=(块)

  3) 如果把两块月饼平均分给每个人半块,可以分给几人?怎样列式?得多少?

  板书:2÷=4(人)

  (3) 让学生观察比较(板书的)3个式子的已知数和得数。

  明确:第一个算式是已知两个因数(和4)求它们的积(2),用乘法计算。

  第二算式是已知两个因数的积2与其中一个因数4,求一个因数,用除法计算。 第三算式是已知两个因数的积2与其中一个因数,求一因数4,用除法计算。

  小结:分数除法的意义。

  强调:分数除法的'意义和整数除法的意义相同。

  (4) 练习:教科书第25页"做一做。

  2.分数除以整数的计算方法。

  (1)出示例子:把米铁丝平均分成2段,每段长多少米?

  (2)启发学生分析数量关系。(画线段图表示)

  米是1米的,把1米平均分成7份,表示其中的6份。6份是,再加上米米里面有6个米,要把米平均分成2段实质就是把6个米平均分成2份,每份是3个米,就是米。

  板书 解法1:÷2==(米)

  使学生明白。

  1)分数除以整数,可以把分数的分子除以整数作分子,分母不变。

  2)这种计算方法有限制条件的,分子必须能被整数整除。

  还有其它的解法吗?

  引导学生结合图形在学过知识的基础上理解到,把米平均分成2段,每段长多少米实际上就是求米的是多少,所以用×来计算。

  板书 解法2:÷2=×=(米)

  (3) 小结:分数除以整数的计算方法。

  板书:分数除以整数(0除外),等于分数乘以这个娄的倒数。

  强调。

  1)被除数不变;

  2)在“÷”转化为“×”的同时,除数的分子、分母调换位置;

  3)0不能做除数,0没有倒数;

  4)这种计算方法在一般情况下都可以进行,应用普遍。

  5)练习:教科书第26页“做一做”。3、看教科书第25——26页,注意解决学生提出的问题。

  三、 巩固练习

  练习七第1、3题。

  四、 作业

  练习七第2、4、5、6题

  五、 课外思考

  练习七第7题。

分数与除法教案11

  教学目标

  1.使学生理解分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算.

  2.掌握分数除以整数的计算法则,并能正确的进行计算.

  3.培养学生分析能力、知识的迁移能力和语言表达能力.

  教学重点

  正确归纳出分数除以整数的计算法则,并能正确的进行计算.

  教学难点

  正确归纳出分数除以整数的计算法则,并能正确的进行计算.

  教学过程

  一、复习引新

  (一)说出下面各数的倒数.

  0。3 6

  (二)已知126×45=5670,直接说出5670÷45和5670÷126的得数,再说说你是怎样想的,根据是什么.(学生回答后教师总结:根据整数除法的意义,不用计算就能知道这两题的结果,谁还记得整数除法的意义是什么?已知两个因数的积与其中一个因数,求另一个因数的运算.)

  (三)引新:同学们想不想知道分数除法的意义吗?分数除法如何计算呢?这节课我们就一起来学习分数除法.(板书课题:)

  二、新授教学

  (一).教学分数除法的意义(演示课件:分数除法的意义)

  1.每人吃半块月饼,4个人一共吃多少块月饼?

  教师提问:半块月饼用分数怎么表示?求4个人一共吃多少块月饼就是求几个 ?求4个 是多少怎样列算式?( )

  2.两块月饼,平均分给4人,每人分得多少块?怎样列式?

  列式:2÷4

  3.两块月饼,分给每人半块,可以分给几个人?

  列式:

  教师提问:说一说结果是多少?你是如何得出结果的?

  4.组织学生讨论:分数除法的意义.

  总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算.

  5.练习反馈.

  根据: ,写出 ,

  (二)教学分数除以整数的.计算法则

  1.出示例1.把 米铁丝平均分成2段,每段长多少米(演示课件:分数除以整数)

  (1)求每段长多少米怎样列算式?

  (2)以小组为单位讨论一下得多少呢?

  米平均分成2段就是要把6个 米平均分成2份,每份是3个 米是 米.

  (3)教师板书整理.

  (米)

  2.教师质疑:如果把 米铁丝平均分成3段、6段怎样计算?

  也可以这样想:把 米铁丝平均分成3段,就是求 米的 是多少,列式是:

  把 米铁丝平均分成6段,就是求 米的 是多少,列式是:

  3.教师继续质疑:如果把 米铁丝平均分成4段每段长多少米?怎样计算?

  (米)

  为什么采用转化成分数乘法这种方法比较好呢?

  组织学生观察 在转变中,什么变了,什么没变?讨论分数除以整数的计算法则.

  4.学生边概括教师边板书:分数除以整数(0除外)等于分数乘以这个整数的倒数.

  三、巩固练习

  (一)计算下面各题.

  学生独立完成,教师巡视,进行个别辅导.

  (二)求未知数

  1. 2.

  (三)判断.

  1.分数除法的意义与整数除法的意义相同.( )

  2.已知两个分数的积与其中一个分数,求另一个分数,用除法解答.( )

  3. ( )

  4. ( )

  5. ( )

  (四)解答下面各题.

  1.把 平均分成4份,每份是多少?

  2.什么数乘以6等于 ?

  3.一个正方形的周长是 米,它的边长是多少米?

  四、课堂总结

  这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?还有什么问题?

  五、课后作业

  (一)计算下面各题.

  (二)解下列方程.

  六、板书设计

  分数除法

分数与除法教案12

  教学目标

  1、结合具体情境,使学生掌握分数混合运算的顺序,能正确进行计算

  2、能运用所学知识解决简单的实际问题,提高综合解题能力。

  学情分析

  本班共有72名学生,男女生人数协调,基础知识比较扎实,应用题的解决较差,少数学生数学成绩很差。

  重点难点

  1、掌握分数混合运算的顺序,正确计算分数混合运算。

  2、解决有关的.实际问题。

  教学过程

  4、1复习导入

  4、1、1教学活动

  活动1【导入】复习导入

  不计算,说说下面各题的运算顺序。

  3700÷9 0、3×9÷6

  50×【(900—90)÷9】

  活动2【讲授】合作探究

  1、出示例3

  一天吃三次,每次吃半片,12片药可以吃几天?

  2、理解题意

  (1、)分析题意,列出算式。

  (2、)提问:求小红可以吃几天,应先求什么?再求什么?

  (3、)小组合作讨论并填写预习卡。方法一:每次吃半片,吃3次:

  12片可以吃几天?

  方法二:12片可以吃:12÷ =12×2=24(次)

  24次可以吃:24÷3=8(天)

  (4)互相交流,请两位同学板演并说一说解题思路。

  (5)列出这两种方法的综合算式。

  (6))提问:综合算式里分别含有几级运算?应先算什么,再算什么?

  7)小结:分数混合运算和整数混合运算相同,在同级运算中,如果

  没有括号,按从左往右的顺序计算。如果有两级运算,先算乘除,再算

  加减。有括号的先算小括号,再算中括号。

  活动3【练习】巩固练习

  1、完成教材第33页“做一做”。

  提问:梯形的面积公式是什么?

  2、完成教材第35页第10题。

  活动4【作业】课堂小结

  这节课你有什么收获?

分数与除法教案13

  一、教学内容:分数与除法,教材第65、66页例1和例2

  二、教学目标:1.使学生理解两个整数相除的商可以用分数来表示。

  2.使学生掌握分数与除法的关系。

  三、重点难点:1.理解、归纳分数与除法的关系。

  2.用除法的意义理解分数的意义。

  四、教具准备:圆片、多媒体课件。

  五、教学过程

  (一)复习

  把6块饼平均分给2个同学,每人几块?板书:6÷2=3(块)

  (二)导入

  (2)把1块饼平均分给2个同学,每人几块?板书:1÷2=0.5(块)

  (三)教学实施

  1.学习教材第65 页的例1 。

  (1)如果把1块饼平均分给3个同学,每人又该得到几块呢?1÷3=0.3(块)

  (2)1除以3除不尽,结果除了用循环小数,还可以用什么表示?

  通过练习,激活了学生原有的知识经验,(即两个数相除的商有可能是整数)也有可能是小数。进而提出当1÷3得不到一个有限的小数时,又该如何表示?这一问题激发了学生探索的积极性,创设解决问题的情境,研究分数与除法的关系。

  ( 3)指名让学生把思路告诉大家。

  就是把1块饼看成单位“1”,把单位“1”平均分成三份,表示这样一份的数,可以用分数来表示,这一份就是块。

  老师根据学生回答。(板书:1 ÷ 3 =块)

  (4)如果取了其中的两份,就是拿了多少块?(块)怎样看出来的?

  通过这样的练习,为下面的操作打下基础。

  2.观察上面三道算式结果得出:两数相除,结果不仅可以用整数、小数来表示,还可以用分数来表示。引出课题:分数与除法

  3.学习例2 。

  ( 1 )如果把3 块饼平均分给4个同学,每人分得多少块?(板书:3 ÷ 4)( 2 )3 ÷ 4 的计算结果用分数表示是多少?请同学们用圆片分一分。

  老师:根据题意,我们可以把什么看作单位“1 " ? (把3 块饼看作单位“1”。)把它平均分成4 份,每份是多少,你想怎样分?请同学到投影前演示分的过程。

  通过演示发现学生有两种分法。

  方法一:可以1个1个地分,先把1 块饼平均分成4 份,得到4 个,3 个饼共得到12个, 平均分给4 个学生。每个学生分得3个,合在一起是块饼。

  方法二:可以把3 块饼叠在一起,再平均分成4 份,拿出其中的一份,拼在一起就得到块饼,所以每人分得块。

  讨论这两种分法哪种比较简单?(相比较而言,方法二比较简单。)

  两种分法都强调分得了多少块饼,让学生初步体会了分数的另一种含义,即表示具体的数量。借助学具,深化研究。

  ( 3 )加深理解。(课件演示)

  老师:块饼表示什么意思:

  ①把3块饼一块一块的分,每人每次分得块,分了3次,共分得了3个块,就是块。

  ②把3块饼叠在一块分,分了一次,每人分得3块,就是块。

  现在不看单位名称,再来说说表示什么意思?( 表示把单位“1 “平均分成4 份,表示这样3 份的数;还可以表示把3 平均分成4份,表示这样一份的数。)

  ( 4 )巩固理解

  ① 如果把2块饼平均分给3个人,每人应该分得多少块? 2÷3=(块)

  ②刚才大家都是拿学具亲自操作的,如果不借助学具,你能想像出5块饼平均分给8个人,每人分多少块吗?(生说数理)

  ③从刚才的研究分析,你能直接计算7÷9的结果吗?()

  借助学具分饼、想象分的过程、抛开情境给出除法算式三个环节的呈现层次清楚,逻辑性强,为学生概括分数与除法的关系提供了足够的操作经验。

  4.归纳分数与除法的关系。

  ( l )观察讨论。

  请学生观察1÷3 = (块)3÷4 =(块)讨论除法和分数有怎样的关系?

  学生充分讨论后,老师引导学生归纳出:可以用分数表示整数除法的商,用除数作分母,被除数作分子,除号相当于分数中的分数线。(课件出示表格)

  用文字表示是:被除数÷除数=

  老师讲述:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数。

  ( 2 )思考。

  在被除数÷除数=这个算式中,要注意什么问题?(除数不能是零,分数的分母也不能是零。)

  ( 3 )用字母表示分数与除法的关系。

  老师:如果用字母a 、b 分别表示被除数和除数,那么除数与分数之间的关系怎样表示呢?

  老师依据学生的总结板书:a÷b = (b≠0)

  明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的'分子相当于除法中的被除法,分母相当于除数。)

  5.巩固练习:

  (1)口答:

  ①7÷13= =( )÷( ) ( )÷24= 9÷9= 0.5÷3= n÷m=(m≠0)

  ②1米的等于3米的( )

  ③把2米的绳子平均分3段,每段占全长的 ( ),每段长( )米。

  解释0.5÷3= 是可以用分数形式表示出来的,但这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数。

  (2)明辨是非

  ①一堆苹果分成10份,每份是这堆苹果的 ( )

  ②1米的与3米的一样长。( )

  ③一根木料平均锯成3段,平均每锯一次的时间是所用的总时间的。( )

  ④把45个作业本平均分给15个同学,每个同学分得45本的 。()(3)动脑筋想一想

  ①把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?

  (用分数表示)

  ②小明用45分钟走了3千米,平均每分钟走了多少千米?每千米需要多少时间?

  教学反思:

  教材分析:本节课是在学生学习了分数的产生和意义的基础上教学的,教学分数的产生时,平均分的过程往往不能得到整数的结果,要用分数来表示,已初步涉及到分数与除法的关系;教学分数的意义时,把一个物体或一个整体平均分成若干份,也蕴涵着分数与除法的关系,但是都没有明确提出来,在学生理解了分数的意义之后,教学分数与除法的关系,使学生初步知道两个整数相除,不论被除数小于、等于、大于除数,都可以用分数来表示商。这样可以加深和扩展学生对分数意义的理解,同时也为讲假分数与分数的基本性质打下基础。

  设计意图:

  1.直观演示是学生理解分数与除法的关系的前提:由于学生在学习分数的意义时已经对把一个物体平均分比较熟悉,所以本节课教学把一张饼平均分给3个人时并没有让学生操作,而是计算机演示分的过程,让学生理解1张饼的就是张。3张饼平均分给4个人,每人分多少张饼,是本节课教学的重点,也是难点。教师提供学具让学生充分操作,体验两种分法的含义,重点在如何理解3张饼的就是张。把2张饼平均分给3个人,每人应该分得多少张?继续让学生操作,丰富对2张饼的就是张饼的理解。学生操作经验的积累有效地突破了本节课的难点。

  2.培养学生提出问题的意识与能力是培养学生创新精神:本节课围绕两种分法精心设计了具有思考性的、合乎逻辑的问题串,“逼”学生进行有序的思考,从而进一步提出有价值的问题。

  3.注重了知识的系统性:数学知识不是孤立的,而是密切联系的,只有把知识放在一个完整的系统中,学生的研究才是有意义的。比如学生在应用分数与除法的关系练习时对0.5÷3=,部分学生会觉着的=表示方法是不行的,教师解释:这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数形式。

分数与除法教案14

  【教学内容】

  【教学目标】

  知识目标:

  体验整数除以分数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。

  能力目标:

  培养学生动手动脑能力,以及判断、推理能力。通过分析的出结论。

  情感目标:

  培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。

  【教学重点】整数除以分数的计算法则推导过程。

  【教学难点】理解一个数除以分数的计算法则的推导过程,

  【教学过程】

  一、创设情境导入新课

  唐僧师徒西天取经路上,有一天,孙悟空化了4张饼回来八戒急着要吃,孙悟空为难八戒说:“想吃饼也容易,先回答几个问题,答上来就吃!”这下可馋坏了八戒,聪明的小朋友,你有什么好办法来帮帮八戒吗?

  二、自主探究合作交流

  1、小组活动

  (1)出示教材27页“分一分”的第(1)、(2)题

  学生拿出准备好的圆片代表饼,动手分一分。

  每2张一份,可以分成多少份?4÷2=2(份)

  每1张一份,可以分成多少份?4÷1=4(份)

  师:每1/2张一份,可以分成多少份?

  学生动手操作,组内交流,把每个圆都平均分成2份,一共可以分成8份。4÷1/2=8(份)

  师:每1/4张一份,可以分成多少份?

  学生对那个手操作,把每个圆片都平均分成4份,一共可以分成16份。

  4÷1/4=16(份)

  (1)出示教材27页“画一画”学生在练习本上画。在组内交流计算方法。

  (2)学生独立完成教材28页“填一填”“想一想”

  师:通过刚才的“分一分”、“画一画”、“填一填”、“想一想”等活动,你发现了什么?

  生:一个数除以分数等于乘这个分数的倒数。

  1、学生独立完成28页的“试一试”。

  集体反馈,同桌之间订正。

  师:通过刚才的计算你发现了什么?

  生:一个数除以一个数(零除外)等于乘这个数的倒数。

  三、课堂练习,巩固运用

  书本练一练

  四、课堂小结畅谈收获

  聪明的小朋友们,八戒在你们的帮助下吃到了饼,也有了新的收获,你们知道它的收获是什么吗?

  (学生谈收获)

  【板书设计】

  整数除以分数

  a÷=a×(b、c≠0)

  【教学反思】

  本节课是北师大版数学第十册第三单元《分数除法》中的第三节课。本节课旨在借助图形语言,在操作活动中理解一个数除以分数的意义和计算方法。为此,根据本节课教材的特点,结合学生已有的个体经验,本节课做了如下三个层次的设计:

  第一层次:“分一分”的活动。通过学生动手分饼活动,让学生经过观察、比较与思考,发现整数除以整数与整数除以分数知识间的内在联系,借助图形语言,初步感知体会“除以一个数”与“乘这个数的倒数”之间的关系。这样做不仅为学生创设了一个更好理解分数除法意义的机会,更主要的是教会学生一种学习的方法,即分数除法的意义可联系整数除法的意义进行学习。最后,通过启发性的问话:“观察这一组算式,你有什么发现?”激发学生思考、求知、解答的愿望,为下一步的探究做了很好的铺垫。

  第二层次:“画一画”的活动。在第一层次分饼的基础上分线段,虽然线段图比圆形图更抽象,但学生已有分饼的.经验,所以学生根据问题不难列出算式,怎样求出结果就成为这一操作活动要解决的问题。其中(1)(2)小题比较容易,学生从图上可以看出结果,关键是第三小题不容易突破,是本节课教学的难点。主要是让学生弄清第(2)小题的算理,再将此方法迁移到地(3)小题。

  第三层次:“想一想、填一填”的活动。由于学生有了前面操作的基础,这部分比较大小的题目,他们不难填出答案。但关键是让学生观察、比较、分析,从而发现题目中蕴含的规律。这一活动是学生对前面问题思考过程的整理,对分数除法意义进一步的理解。

  第四层次:实践应用活动。是学生应用所学知识解决实际问题,巩固、内化知识的过程。

分数与除法教案15

  分数乘、除法及比是本册教材的重点内容,为突出知识间的内在联系,帮助学生形成知识网络,本节复习课在教学设计上主要关注以下几个方面:

  1.重视对分数乘、除法之间的关系及分数乘、除法计算方法的复习。

  教学中,结合教材内容,进一步强调分数乘、除法之间的关系,加强计算方法的指导,使学生在进一步理解并掌握分数除法是分数乘法的逆运算的同时,计算能力得到提高。

  2.重视对相关概念、性质及某些知识间相互关系的复习。

  教学中,把比的相关概念、倒数的相关概念、比的性质以及比与分数、除法的关系等作为重要的复习内容,结合教材相关习题进行全面、系统地复习,使学生加深对概念的理解,同时将比与分数、除法联系起来。

  3.重视对学生解决问题能力的培养。

  教学中,把用分数乘、除法解决问题和用比解决实际问题作为重要的复习内容之一,结合教材习题,重点分析题中的数量关系,使学生通过对比练习,更好地掌握解决分数乘、除法问题以及比的有关问题的思路,提高学生分析问题、解决问题的能力。

  相同点:题中的数量关系相同,解题思路相同。

  不同点:①题表示单位“1”的量已知,用乘法计算。

  ②题表示单位“1”的量未知,列方程解答或用除法计算。

  (3)总结解决分数乘、除法问题的方法和解题关键。

  ①方法:表示单位“1”的量已知,求单位“1”的几分之几是多少,用乘法计算;表示单位“1”的`量未知,已知一个数的几分之几是多少,求这个数,列方程解答或用除法计算。

  ②关键:找准表示单位“1”的量。

  设计意图:结合教材习题,复习画线段图分析问题的方法,在对比中使学生进一步理解并掌握解决分数乘、除法问题的方法和解题关键,提高学生解决问题的能力。

  ⊙巩固练习

  1.完成教材115页6题。

  地球上海洋面积是36000万平方千米,占地球总面积的。地球总面积是多少万平方千米?

  2.完成教材116页8题。

  (1)五年级同学收集了165个易拉罐,六年级同学比五年级多收集了。六年级收集了多少个易拉罐?

  (2)四年级比六年级少收集了,四年级收集了多少个易拉罐?

  3.完成教材116页10题。

  一列火车的速度是180千米/时。一辆小汽车的速度是这列火车的,是一架喷气式飞机的。这架喷气式飞机的速度是多少?

  4.完成教材116页11题。

  (1)用84 cm长的铁丝围成一个长方形,这个长方形的长与宽的比是2∶1。这个长方形的长与宽分别是多少厘米?

  84÷2=42(cm) 长:42×=28(cm)

  宽:42×=14(cm)

  (2)用84 cm长的铁丝围成一个三角形,这个三角形三条边长度的比是3∶4∶5。三条边各是多少厘米?

  [84÷(3+4+5)=7(cm) 7×3=21(cm)

  7×4=28(cm) 7×5=35(cm)]

  ⊙课堂总结

  通过本节课的复习,你有什么收获?