- 相关推荐
关于分数乘法教案汇编9篇
作为一名专为他人授业解惑的人民教师,就难以避免地要准备教案,编写教案助于积累教学经验,不断提高教学质量。教案应该怎么写才好呢?下面是小编收集整理的分数乘法教案9篇,仅供参考,大家一起来看看吧。
分数乘法教案 篇1
教学目标:
1、使学生掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法的两步应用题。
2、发展学生思维,侧重培养学生分析问题的能力。
教学重点:理解数量关系。
教学难点:根据多几分之几或少几分之几找出所求量的对应分率。
教学过程:
一、 复习
1、口答:把什么看作单位“1”的量,谁是几分之几相对应的量?
(1)一块布做衣服用去 。 (2)用去一部分钱后,还剩下 。
(3)一条路,已修了 。 (4)水结成冰,体积膨胀 。
(5)甲数比乙数少 。
2、口头列式:
(1)32的 是多少? (2)120页的 是多少?
(3)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后,降低了 ,降低了多少分贝?
(4)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后只剩下原来的 ,人现在听到的声音是多少分贝?
3、你能把口头列式计算中的第(3)(4)题合并成一道题吗?
4、根据学生回答,出示例4,并指出:这就是我们今天要学习的“稍复杂的`分数乘法应用题”。
二、新授
1、教学例2
(1)运用线段图帮助学生分析题意,寻找解题方法。
(2)让学生说出图中各部分表示什么?哪些是已知的,哪些是要求的,哪一个是表示单位“1”的量?让后把线段图表示完整。
降低?分贝
现在?分贝
80分贝
(1) 四人小组讨论,根据线段图提出解决办法,并列式计算。
解法一:80-80× =80-10=70(分贝)
现在?分贝
80分贝?
(4)鼓励学生根据题意、结合线段图,想出第二种解答方法。
解法二:80×(1- )=80× =70(分贝)
(5)学生讨论两种解法的不同:两种方法都是从整体与部分的关系入手。第一种思路是从总量里减去一个部分量;第二种方法是求出部分量与总量的比较关系,再运用求一个数的几份之几是多少的方法求出这个部分量。
2、巩固练习:P20“做一做”
3、教学例3
(1)读题理解题意后,提出“婴儿每分钟心跳的次数比青少年多 ”表示什么意思?(组织学生讨论,说说自己的理解)
(2)引导学生将句子转化为“婴儿每分钟比青少年多跳的次数是青少年每分钟心跳次数的 ”。着重让学生说说谁与谁比,把谁看作单位“1”。
(3)出示线段图,学生讨论交流,结合例2的解题方法,学生独立列式计算后全班交流两种解题方法。
解法一:75+75× =75+60=135(次)
解法二:75×(1+ )=75× =135(次)
4、巩固练习:P21“做一做”(列式后让学生说说算式各部分表示什么)
三、练习
1、练习五第2、3题:引导学生抓住题目中关键句子分析,找到谁与谁比,谁是表示单位“1”的量。
2、练习五第3、4题:学生依据例题引导的解题方法,独立完成3、4题。
四、布置作业
练习五第7、8、9、10题。
课后反思:
例2和例3都是在理解和掌握了求一个数的几分之几是多少的问题的思路和方法的基础上,学习解决稍复杂的求一个数的几分之几是多少的问题。教学中,我依然依据教学例1时教给学生的解答步骤进行分析解答,找出单位“1”,并画出线段图帮助理解。教学中,我引导学生紧扣线段图,直观地理解题意,并引导学生从数量和分率两方面入手,培养学生思维的多样性。但本堂课,老师讲解的部分似乎多了一些,留给学生讨论、练习的时间稍为稀薄。
分数乘法教案 篇2
能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。
知识目标:学习整数乘以分数的计算方法,让学生亲自经历探究整数乘以分数的计算原理,学生能够熟练准确的计算整数乘以分数。
情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。
教学重点、难点:学生能够熟练的计算整数乘以分数
教学方法:师生共同归纳和推理
教学准备:教学参考书、教科书
教学过程:
一、复习导入:
教师出示教学板书,请学生计算下列分数加减运算题。
教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?
学生寻找完毕,纷纷举手准备回答问题。
教师提问学生回答问题。(先通分,再进行分子与分子相加减;分母不变…)并注意更正学生的'错误和表扬回答问题的同学。
二、讲授新课
同学们我们学习一种新的运算:分数乘法,让学生想一想什么是分数乘法?
学生同桌之间讨论,教师提问学生回答问题。
教师板书例题,让学生想一想如何计算?
学生列出算式3×=,学生同桌之间相互讨论,如何计算整数乘以分数?
教师提问学生说一说自己是怎样计算的?
(学生1:3×==;学生2:3×====……)
教师和学生总结整数乘以分数的计算方法,整数乘以分数,只把整数乘以分子,分母不变。)
三、巩固练习:
做课本2页涂一涂,算一算,2个的和是多少?
让学生熟练计算,教师及时纠正学生错误的计算方法。
做课本试一试1、2题。
四、课堂小结:
同学们,这一节课你学到了哪些知识?(提问学生回答)
板书设计:
分数乘法
3×==3×====
分数乘以整数的计算方法:整数乘以分数,只把整数乘以分子,分母不变。)
教学反思:
分数乘法教案 篇3
教学目标
抓住分数应用题的核心倍数关系和等量对应,通过一例多用、一题多变,把各类应用题构成一个整体,帮助学生从本质上理解分数应用题的数量关系,提高学生的分析能力和解题能力.
教学过程
一、引入
根据条件列出对应关系.
1.青砖的块数比红砖多
2.青砖的块数比红砖少
3.红砖的块数比青砖多
4.红砖的块数比青砖少
上面各题哪一个量是单位1的量,占几份?另一个量所对应的分率是什么,占几份?
二、展开
(一)将上列各条件补充一个共同的条件和问题,出示例1.
红砖2100块 有青砖多少块?
1.学生独立解答;
2.大组交流;
3.列表归纳.
(二)出示例2
电视机厂今年生产电视机3600台,____________________,去年生产多少台?
1.根据已知的一个条件和问题,对照下列含有分率的条件,找出相应的式子.
(1)相当于去年的25%
(2)比去年少25%
(3)比去年多25%
(4)去年生产的是今年的25%
(5)去年比今年少25%
(6)去年比今年多25%
2.将应选择的条件填入下列各式后的括号内.
( )
( )
( )
( )
( )
( )
3.师生共同分析
(1)按照补充的条件,找相应的式子,如(1)相当于去年的25%.
分析:去年的生产量是单位1的量,占100份,今年的生产量相当于去年的25%,占25份,对应关系是:
去年的产量□100
今年的产量360025
设去年生产x台,得到的式子:
在第六个式子的括号里填(1).
(2)按照式子找应补充的条件.
如:
分析:100份与3600台相对应,也就是今年的生产量3600台是单位1的量,占100份,去年的生产量是未知数,比今年多25份,即去年比今年多25%.括号里应填(6).
三、巩固
(一)根据题意列式解答:
果园里有梨树168棵 苹果树有多少棵?
(二)机床厂现在制造一台机器的成本是1200元,比原来的成本降低25%.原来制造一
台机器要多少元?
(三)工厂去年生产换气扇6220台,今年比去年增产20%,今年计划生产多少台?
(四)某印染厂原来印花需要60人,制造自动印花机后,印花人数减少了40%,现在印花需要多少人?
教案点评
这节课所出现的分数两步应用题的四种类型,在通常情况下是在几节课中出现,采用一例一类题的教学方法。这样的教法,学生学起来似乎轻松一些,但对数量关系的理解往往不够深刻。这节课摆脱了常规的教学方法抓住了分数应用题的核心倍数关系和量率对应,采用了一例多用,一题多变的教学方法,把四种题型构成一个整体,把分数所表示的'两个量的倍数关系作为教材的基本结构,揭示数量的具体和抽象的矛盾,把分析具体的数量与抽象的数之间的关系作为基本的教学方法。这样,使学生能在较高的水平上来理解分数应用题的数量关系,既提高了教学质量,又减轻了负担。整节课的设计,体现了在简明的结构中包含较大的知识容量。简明的结构,主要指再生能力较强的基本结构。这节课把分数所表示的两个量的倍数关系作为基本结构。这样的结构,具有数量关系之间的联结和转换功能,具有认知结构的同化和调整功能,它必须包含较大的知识容量,能将所包含的内容统筹兼顾,有主有从。这种简便而大容量的知识结构,还为学生提供了多层次的训练材料,使不同认知水平的学生在原有基础上得到不同程度的提高。
分数乘法教案 篇4
教学目标
1.使学生理解、掌握题中的数量关系。根据一个数乘以分数的意义掌握求一个数的几分之几是多少的一步计算的分数乘法应用题的解题方法。
2.渗透事物之间普遍联系的思想,培养学生利用已有知识迁移到新知识的能力。
教学重点和难点
1.使学生能够用线段图正确表达题意,并在此基础上进一步理解题中的数量关系。
2.在搞清数量关系的前提下,根据一个数乘以分数的意义,正确解答求一个数的几分之几是多少的一步分数乘法应用题。
教学过程
(一)复习准备
1.谈话、提问。
我们已经学习了分数乘法的'计算方法,这两道题你能否不计算就比较出哪个算式的乘积大?
为什么呢?
分5份后取其中的2份是多少。)
当一个数乘以分数时求的是什么?
(一个数乘以分数就是求这个数的几分之几是多少。)
2.口述下列算式的意义。
求一个数的几分之几是多少怎样列式呢?
3.列式。
(二)学习新课
1.出示例1。
2.分析题意。
(1)读题,找出已知条件和所求问题。
(2)分析已知条件。
①谈话提问:
题中有两个已知条件,其中学校买来100千克白菜是已知学校买来
那么它表示什么呢?请你们以小组为单位通过讨论下面的问题得出结论。
③汇报讨论结果。
均分成5份,吃了的占其中的4份。)
④那么我们应把谁看作单位1?(100千克)
⑤怎样用线段图表示?先画什么?再画什么?求吃了多少千克,是求哪部分?
3.列式解答。
(1)根据刚才的分析,你能用已学过的整数乘除法来解答吗?
10054=80(千克)
1005求的是什么?再乘以4呢?
(2)刚才是用了整数乘除法的解答方法,怎样直接用分数计算呢?
所以把谁看作单位1?(100千克)
根据一个数乘以分数的意义应怎样列式?
答:吃了80千克。
4.课堂练习。
队的有多少人?
(1)读题,找出已知条件和问题。
(3)请你们以小组为单位进行分析,并画出线段图,解答出来。
(4)反馈。
说一说你们小组的分析思路及解答方法。
是多少。)
5.小结。
刚才我们解答的两道题,都是已知单位1是多少,求它其中的一部分即求它的几分之几是多少。解答这类应用题的关键是什么?
(分析含有分率的句子,找准单位1,再根据一个数乘以分数的意义列式解答。)
6.下面我们来看这样一道题,看看它与上面的题有什么不同?
(1)出示例2。
(2)读题,找出已知条件和问题,并确定从哪儿入手分析。(小强身高
(3)分析、画图。
①你怎样理解这个条件?(把小林身高看作单位1,平均分成8份,小强的身高是这样的7份。)
②这道题中涉及到几个数量?哪几个数量?(小林的身高、小强的身高。)
③为了区别,画图时要用两条线段来表示。先画谁呢?(小林的身高)再画谁呢?(小强的身高)怎样表示?
(4)看图列式。
少。)
②怎样列式解答?
7.改动上题,你能独立分析吗?
米?
(2)画图分析解答。
(3)提问反馈:
①把谁看作单位1?
②小林身高怎样用线段图表示?
③求小林身高就是求什么?
求一个数的几倍,我们也可以理解成求这个数的几分之几是多少。
(三)课堂总结
例1、例2有什么相同点和不同点?
(四)巩固反馈
(画图,解答)
球价格多少元?
3.对比练习:
少元?
(五)布置作业
20页第1~5题。
课堂教学设计说明
本节教案的设计着重让学生掌握分析方法,解题思路。培养学生分析问题的能力。
例1的讲授,通过让学生分析已知条件,以线段图为手段找到题中的数量关系。在明确数量关系的基础上得出,求问题就是在求一个数的几分之几是多少。从而很自然的由旧知识迁移到新知识。
例2的讲授,既要让学生明确两例题的区别,又要让学生统一到都是求一个数的几分之几是多少。为了防止学生出现思维定势,在练习的设计上,通过变换关键句使学生灵活分析解答,易于学生把握解题的关键。
分数乘法教案 篇5
教学内容:教学第83页的例2,完成随后的“练一练”和练习十六第1—4题。
教学目标:
1、使学生理解并掌握用分数乘法和减法解决一些稍复杂的实际问题。
2、使学生进一步积累解决问题的策略,增强数学应用意识。
教学过程:
一、复习导入。
岭南小学六年级有45个同学参加学校运动会,其中男运动员占。男运动员有多少人?
独立解答,说说“其中男运动员占”的含义及解题思路。
如果把问题改成:“女运动员有多少人?”就成了今天我们要研究的新内容了。
二、教学例2。
1、出示例2岭南小学六年级有45个同学参加学校运动会,其中男运动员占。女运动员有多少人?
(1)比较复习题与例2的不同。
问题不同:复习题要求“男运动员有多少人?”而例2要求“女运动员有多少人?”
(2)说说“其中男运动员占”的`含义
是哪两个量比较的结果?比较时把哪个量看作单位“1”?单位“1”的是哪个量?
(3)让学生在线段图上分别表示出男女运动员所占的部分。
独立完成在书上,评讲。
(4)要求“女运动员有多少人?”可以先求什么?并列出综合算式。
板书:45-45
说说45的含义,独立解答。
(5)想一想,还可以怎样计算?
板书:45(1-)
说说(1-)的含义,独立解答。
(6):怎样解答这类应用题?
三、巩固练习。
1、做练一练第1题。
先说一说可以怎样想,再独立解答。
2、做练一练第2题。
独立完成,可以先画图思考,再列式解答。
3、做练习十六的第1题。
让学生先画线段图表示题中的已知条件和所求问题,再列式解答。
独立解答,说说解题思路。
4、做练习十六的第3题。
先说说题中两个分数的含义,再列式解答。
四、全课,揭示课题。
通过这节课的学习,你有什么收获?在解题时要注意什么?
结合学生的回答,揭题板题。
五、课堂作业
6、做练习十六的第2、4题。
分数乘法教案 篇6
《分数乘法》
教学目标和要求
1、结合具体情境,在操作的基础上探索并理解分数乘分数的意义;
2、探索并掌握分数乘分数的计算方法,并能正确计算;
3、能解决简单的分数与分数相乘的实际问题,体会数学与生活的密切联系,分数乘法
(三)教案。教学重点
1、在具体情境中探索并理解分数乘分数的意义;
2、探索并掌握分数乘分数的计算方法,并能正确计算;教学难点本课的难点让学生通过折纸来解决,这一动手活动让学生充分理解了分数乘法的算理,帮助学生推导分数乘分数的计算法则。
教学准备
1、每人准备一条约10厘米长的纸条;
2、每人准备2张长方形的纸。
教学过程一、探索分数乘分数的意义和计算方法。
1、直接引入庄子这个故事,先让学生读一读教科书第7页的一段话。PPT出示。让学生紧接着思考这个问题“一尺之捶,日取其半,万世不竭”到底是什么意思。在学生理解了这句话的意思之后,提问:“庄子老人家这句话到底对不对呢?”“我们能不能来验证一下呢?”。
⑴拿出一张纸条当作一尺之捶,同学们先把纸条对折了一次。师:“现在的一半我们可以用多少来表示啊?”生:“ ”师:剪去一半,还剩下多少?这时“ ”表示什么意思呢?剩下的'占这张纸的“ ”用算式表示:1*1/2师:请同学们再把剩下的“ ”对折一下,再剪去一半(得到四分之一)谁能说说这又表示什么意思呢?”生“就是再取一半的意思”“是在原来一半的基础上再取一半”“就是的师重复:这部分表示的是二分之一的二分之一。师:“根据前面所学过的内容,你能用一个算式表示出剩下部分占这张纸的几分之几吗?”学生很快就写出了1/2×1/2。再引导学生认识这个乘法算式所表示的意义。师问:为什么用乘法计算?这个算式表示什么意思?得数是多少?学生列出算式后,引导学生理解,求剩下的部分占这张纸条的几分之几就是求1/2的1/2是多少,与上节课学习的求一个数的几分之几的意义相同,所以用乘法计算。师再问:“如果我们按照庄子的说法那接下去该怎么求呢?”学生答“再乘1/2”得到1/4×1/2=1/8,如果再往后求还剩下多少,那就再乘1/2 ,“一直乘下去,永远也乘不尽”现在你们知道万世不竭的意思了吧。
2、折一折,涂一涂让学生拿出课前准备好的一张长方形纸,按照教科书的要求(PPT出示)折一折,涂一涂。讨论:
(1)请你说一说,红色部分占斜线部分的几分之几?占整张纸的几分之几?你能用算式表示出这幅图的意思吗?3/4×1/4=3/16,就是求3/4的1/4是多少?
(2)你能按照上面的方法先涂出1/4,再涂出1/4的3/4吗?
学生独立完成,并列式汇报
3、做一做:根据图示,想一想,列出算式,算出结果。
1/2×1/4=1/2×3/4=
二、讨论小结分数乘分数的计算方法观察上面的例子,你发现积的分子、分母与两个因数的分子、分母各有什么关系?在小组内交流。说一说:你能总结分数与分数相乘的计算方法吗?小结:分数与分数相乘,分子与分子相乘的积作分子,分母与分母相乘的积作分母。想一想:此法与分数与整数相乘的方法有矛盾吗?
三、巩固练习:
1、P7做一做
2、P8试一试:强调,能约分的要先约分。
3、提高练习:
(2)教科书第9页数学故事“唐僧分瓜”。通过这节课的学习,你有什么收获?通过这节课的学习,我们知道了分数乘法的意义就是求这个数的几分之几是多少;计算分数乘法时,要把分子相乘的积作分子,分母相乘的积作分母。板书设计分数乘法
(三)1 *1/2=1/21的1/2是多少?
3/4*1/4=3*1/4*4=3/161/2*1/2=1/41/2的1/2是多少?
1/4*3/4=……… =3/161/4*1/2=1/81/2*1/4=………=1/8………1/2*3/4=………=3/83*3/4=3/1*3/4=9/4
分数乘法教案 篇7
教学目标:
1、使学生进一步理解求一个数的几分之几是多少的应用题的数量关系,掌握这类应用题的解题思路和解题方法。
2、培养学生认真审题,独立思考的学习习惯。
3、训练学生分析、解题问题的能力。
教学过程:
一、书上第44页上的第12题
1、先引导学生观察每一组分数的大小特点,知道有一些分数比1大,有些分数比1小。计算后,再把每一个积分别与15(或36)比较。
从而发现:一个数与比1大的分数相乘,所得的结果比原数大;一个数与比1小的分数相乘,所得的结果比原数小。
2、书上第44页上的第13题
引导学生根据第12题发现的规律,直接判断出每组两道算式得数的大小。
二、说说分数的意义,并把数量关系补充完整
(1)今年的产量比去年增产1/8。
×1/8=
(2)钢笔枝数的2/5相当于圆珠笔的枝数。
×2/5=
(3)花布的米数比白布长1/4。
×1/4=
(4)实际每月比计划节约了1/10。
×1/10=
(引导学生想到:单位“1”是哪个量,另一个量是多少,写出数量关系。)
二、对比练习。
1、有两块布,白布长15米,花布是白布的1/3,花布有多少米?
2、有两块布,白布长15米,花布比白布长1/3,花布比白布长多少米?
3、有两块布,白布长15米,花布长1/3米,白布比花布长多少米?
(1)分别说说题中的分数是哪两个量比较的结果,比较时把哪个量看作单位1?
(2)比较3题有何异相点?
三、综合练习。
1、一种商品原价是250元,现价是原价的4/5,现价是多少?
2、一种商品原价是250元,后来降价了1/5,降价多少?
3、修路队修一条1米的路,第一天修了全长的1/6,第二天修了全长的1/4。
(1)两天分别修了多少米?
(2)第二天比第一天多修多少米?
(3)还剩多少米没修?
四、作业
课前思考:
潘老师确实是多年教学毕业班老师,教学经验比较丰富。在她补充的练习中,3题对比练习是每届六年级学生易混淆之处,在此比较,加深对三种类型实际问题的印象,理清思维。增加的综合练习,是本课内容的拓展延伸。我要借用一下了。
第二,在明天的教学中,我还要增加分数乘法计算练习,提高计算的正确率。
课前思考:
上完分数乘法的第三课时——简单的分数乘法实际问题(二)(例3)后,我们三位数学老师都感到这一课时的内容学生学得不够扎实,所以需要增加一课时,设计一些对比题,进一步提高学生分析数量关系的能力,尤其是加强对学习困难生的辅导。潘老师在根据学生学习情况后及时增加了这一节练习课,设计了“看关键句说数量关系”、“对比题”、“综合题”这几个层次的练习,练习题较典型,在课上,我们还是要组织学生认真读题,理解题目意思后再思考题中各数量间的关系。课上还要多给学生互相交流的机会,多说说数量关系,让更多的学生真正掌握分析数量关系的方法,学会思考。另外,练习八中的第12、13题要放进本课时,分数乘整数的计算练习也可增加些,计算正确率要提高,学生良好的计算习惯亟需培养。
课后反思:
由于自己在前两节课新授学习时轻视了这单元的难度,高估学生,所以在新学习分数乘法时,就说明:熟练以后可以省略中间的计算过程直接写出得数,且补充习题册上也有这样的要求,造成很多学生在计算还不熟练的情况下就不愿意写出计算过程,结果计算正确率不高,还有部分学生计算方法没有得到完全巩固。所以在今天的练习课上,再次复习巩固计算方法,并且要求学生以后一定要写出计算过程,特别是有约分的'类型,直到以后熟练后我再通知什么时候可以省略中间的计算过程。从今天的课堂作业看,这样操作确实收到了一定效果。
第二,继续加强对数量关系的训练,关键是对其中分数含义的理解。只要学生能理解分数的意义,说明是将什么看作单位1,平均分成几份,表示这样的几份,那么写数量关系基本上没有困难了。同时,继续教学生学习借助线段图分析部分题目,这样更直观形象。
课后反思:
通过这节课的练习,大部分学生都能正确说出题中分数的具体含义和正确找出单位“1”的量,对课堂上预设的题完成的不错。从作业的反馈情况来看(要求写出数量关系),有部分学习困难的学生还是没能准确的找对单位“1”的几分之几表示哪个数量。对于这些学生课后还得加强这方面的辅导。
课后反思:
今天这节课的教学重点、难点是帮助学生学会分析简单分数乘法实际问题的数量关系,潘老师设计的教案,我再结合两个班级学生学习实际情况,补充了几道对比题,加强对不同类型实际问题数量关系的辨析。反思自己的教学,可能在组织学生分析数量关系时有点过于急噪,要加以改进。我想在根据关键句分析时,一是思考其中分数的意义,即找出单位“1”的量,然后分析谁是谁的几分之几,要把谁比谁多几分之几转化为谁是谁的几分之几,这是学生分析数量关系时感到困难的地方。二是可以借助画线段图理解数量关系,在画图分析的过程中能更清晰地看出两个数量间的关系,也为以后学习较复杂的分数乘、除法实际问题打好基础。
从学生作业情况看,遇到题中要求写出数量关系仍有困难,特别是一些学习困难生。要抽时间进行个别辅导。
分数乘法教案 篇8
第一单元
分数乘法
第五课时
小数乘分数
教学内容:
教材第8页例5,做一做,练习二1~4。
教学目标:
1、在解决问题的过程中学习并掌握小数乘分数的计算方法。
2、经历小数乘分数的计算方法的探究过程。
3、体会算法多样化的数学思想,提高计算能力。
教学重点:
掌握小数乘分数的计算方法。
教学难点:
灵活选择不同的计算方法,熟练地进行小数乘分数的计算。
教学过程:
一、复习导入。
1、计算
交流时让学生说一说计算方法和计算过程中的约分方法。
2、把下面的小数化成分数,分数化成小数。
1.2()
0.4()
3.5()
1.25()
让学生说一说怎样将一个小数化成分数?
二、探索新知
1、例题5:松鼠的尾巴长度约占身体长度的 。松鼠欢欢的身体长2.1分米,松鼠乐乐的身体长2.4分米。
(1)提取题中的'已知条件和所求问题
已知条件:①松鼠的尾巴长度约占身体长度的34,②松鼠欢欢的身体长2.1dm。
所求问题:松鼠欢欢的尾巴有多长?
(2)确定单位1,根据松鼠的尾巴长度约占身体长度的34可知,应把松鼠欢欢的身体长看作单位1,单位1已知,所求松鼠欢欢的尾巴有多长,就是求2.1dm的34是多少,用乘法计算,列式为2.134
启发观察,这个算式和我们前面学习的分数乘法有什么不同?
(3)探讨小数乘分数的计算方法。
提问:小数乘分数,可以怎样进行计算呢?想一想,试一试。
学生独立思考,尝试计算。组织交流,得出可以把2.1化成分数,也可以把 化成小数。汇报交流计算方法,教师结合交流情况进行板书。
小数化成分数: = = (分米)
分数化成小数: =2.10.75=1.575(分米)
3、解决问题二。
(1)出示问题:松鼠乐乐的尾巴有多长?
(2)学生独立解答。
组织交流汇报。交流时,先让学生说说列式的依据,再交流计算方法。
学生可能会采用问题一中学习的方法进行计算,这时教师可以追问:同学们,想想分数乘整数时,我们是怎样进行约分的,小数乘分数也能这样约分吗?
当学生有所发现后,让学生进行尝试计算,最后汇报交流。教师结合学生的交流情况进行板书
小数和分母约分: (分米)
4、观察比较,回顾思考。
提问:观察上面三种计算方法,你想发表自己的什么见解?让学生独立思考后进行小组交流讨论,是后进行全班交流 。(三种方法中,小数化成分数的方法具有普遍性,适用于所有的小数乘分数的计算;当分数不能化成有限小数时,一般不采用分数化成小数的方法进行计算;当小数和分母不能进行约分时,一般不采用小数和分母约分的方法进行计算。三种方法中,小数和分母约分的方法计算起来最简便,因此在计算小数乘分数时,先观察这个小数能不能和分母进行约分,如果可以进行约分,一般采用先约分再乘的方法。)
三、巩固练习。
1、教材第8页做一做。先让学生独立计算,再组织汇报交流。交流时让学生说说为什么选择这样的方法进行计算。
2、教材第10页练习二第2题。
3、教材第10页练习二第3题。
分数乘法教案 篇9
教学内容:
课本第14、15页的例1和例2,完成做一做和练习四的第1~5题。
教学重点:
学会找单位1
教学难点:
依题意画出线段图
教学目的:
1.使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。
2.培养学生分析能力,发展学生思维。
教学过程:
一、复习
1.先说下列各算式表示的意义,再口算出得数。
2.列式计算。
(1)20的是多少?
(2)6的是多少?
让学生列式计算解答,再指名说说算式的意义,并指出把哪个数看作单位1。
二、新授。
1.教学例1。
出示例1:学校买来100千克白菜,吃了,吃了多少千克?
(1)指名读题,说出条件和问题。
(2)引导学生画出线段图,并在线段图上标出题目中的条件和问题。
先画一条线段,表示100千克白菜。
吃了,吃了谁的?(100千克白菜)要把100千克白菜平均分成5份,吃了4份,怎样表示?
教师边说边画出下图:
(3)分析数量关系,启发解题思路。
引导学生说出:吃了,是吃了100千克的,所以把100千克看作单位1,要求100的是多少,根据一个数乘以分数的意义,直接用乘法计算。
(4)学生列式计算:=100(20)?=80
(5)再让学生分析一下数量关系。
(6)练一练:完成第18页做一做第1题。
评讲订正时,让学生分析一下数量关系。
2.教学例2。
出示例2:小林身高米,小强身高是小林的,
小强身高多少米?
(1)明确题意,指名读题,说出条件和问题。
(2)让学生画出线段图并标明条件和问题。
①要画几条线段表示题里的数量关系?
②引导学生根据题里的条件,确定谁的身高要画得长一些,谁的身高画得短一些。
③第一条线段表示谁的身高?画了第一条线段表示小林的身高,该怎样画第二条线段表示小强的身高。
启发学生:根据小强身高是小林的,要把表示小林的线段平均分成8份,在它的下面画出其中7份的长度代表小强的身高。
教师边启发边画出如下线段图:
(3)分析数量关系,启发解题思路。
启发学生思考:小强身高是小林的,就要把小林的身高看作单位1,要求小强的身高,就要求出小林身高的是多少,即求的是多少,根据分数乘法的意义,用乘法计算。
(4)让学生列式计算。
(5)如果把上题改成下面的题:
小强身高米,小林身高是小强的'倍,小林身高多少米?
问:哪条线段画得长一些?怎样画?
把谁看作单位1为什么?
怎样列式?
教师边启发边画出如下线段图:
(6)教师说明:
一个数是另一个数的几分之几,可以是真分数,也可以是带分数。这里是带分数,把化成假分数,上题也可以改成小林身高是小强的
指出:在这种情况下乘得的积大于原来的被乘数。
(7)做一做。
完成课本14页做一做的第3题。
三、巩固练习
1.完成课本第14页做一做的第3题。
学习列式计算后,指名让学生分析数量关系。
2.完成练习四的第5题。
说明:一个数是另一个数的几分之几,不可以是真分数,也可以是带分数,还可以是整数。
订正时指名分析。
四、全课小结。
今天我们学习的分数乘法一步应用题,应根据一个数是另一个数的几分之几分析数量关系,应用一个数乘以分数的意义来解答。
五.作业。
练习四的第1~4题。